Abstract:To improve the wire and arc additive manufacturing (WAAM) numerical simulation efficiency of aluminum alloy cylindrical walls, a segmented cambered body heat source model was developed with its mathematical derivation clarified based on segmentation on circular path of the Goldak body heat source with secondary development on ABAQUS. The moving heat source, the material models and the boundary conditions were verified in a finite element model with the numerical results agreeing well with experimental data. The accuracy and efficiency of the WAAM numerical simulations were evaluated using three segmented computing strategies. Comparisons of the results using the three segmented computing strategies with those using the moving heat source show that the thermal cycles are similar with peak temperatures having less than 8% errors, the residual stress distributions are consistent and the results are not sensitive to the number of segments in the segmented sources. The use of one, four or eight segmented heat sources reduces the total computational time by 98.24%, 77.51% and 65.96%.
董明晔, 赵玥, 贾金龙, 李权, 王福德, 吴爱萍. 铝合金筒壁电弧增材制造数值模拟中分段弧形体热源模型的建立[J]. 清华大学学报(自然科学版), 2019, 59(10): 823-830.
DONG Mingye, ZHAO Yue, JIA Jinlong, LI Quan, WANG Fude, WU Aiping. Development of segmented cambered body heat source model in numerical simulations of aluminum alloy cylindrical walls. Journal of Tsinghua University(Science and Technology), 2019, 59(10): 823-830.
[1] DEREKAR K S. A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium[J]. Materials Science and Technology, 2018, 34(8):895-916. [2] DING D H, PAN Z X, CUIURI D, et al. Wire-feed additive manufacturing of metal components:Technologies, developments and future interests[J]. International Journal of Advanced Manufacturing Technology, 2015, 81(1-4):465-481. [3] FRAZIER W E. Metal additive manufacturing:A review[J]. Journal of Materials Engineering and Performance, 2014, 23(6):1917-1928. [4] OU W, MUKHERJEE T, KNAPP G L, et al. Fusion zone geometries, cooling rates and solidification parameters during wire arc additive manufacturing[J]. International Journal of Heat and Mass Transfer, 2018, 127:1084-1094. [5] GU J L, BAI J, DING J L, et al. Design and cracking susceptibility of additively manufactured Al-Cu-Mg alloys with tandem wires and pulsed arc[J]. Journal of Materials Processing Technology, 2018, 262:210-220. [6] JIAN W, XIN L, WANG J T, et al. Grain morphology evolution and texture characterization of wire and arc additive manufactured Ti-6Al-4V[J]. Journal of Alloys and Compounds, 2018, 768:97-113. [7] 段梦伟, 彭勇, 周琦, 等. 水浴PTIG微变形电弧增材制造工艺[J]. 焊接学报, 2018, 39(9):113-116. DUAN M W, PENG Y, ZHOU Q, et al. Micro-deformation PTIG wire and arc addictive manufacture under water bath[J]. Transactions of the China Welding Institution, 2018, 39(9):113-116. (in Chinese) [8] 黄丹, 朱志华, 耿海滨, 等. 5A06铝合金TIG丝材-电弧增材制造工艺[J]. 材料工程, 2017, 45(3):66-72. HUANG D, ZHU Z H, GENG H B, et al. TIG wire and arc additive manufacturing of 5A06 aluminum alloy[J]. Journal of Materials Engineering, 2017, 45(3):66-72. (in Chinese) [9] 张飞奇, 陈文革, 田美娇. Ti-6Al-4V丝材电弧增材制造钛合金的组织与性能[J]. 稀有金属材料与工程, 2018, 47(6):1890-1895. ZHANG F Q, CHEN W G, TIAN M J. Microstructure and properties of Ti-6Al-4V alloy by wire+arc additive manufacturing[J]. Rare Metal Materials and Engineering, 2018, 47(6):1890-1895. (in Chinese) [10] 李晗嫣, 陈文革, 张飞奇, 等. 基于CAFE模拟钛合金丝材电弧增材制造凝固过程的组织演变[J]. 中国有色金属学报, 2018, 28(9):1775-1783. LI H Y, CHEN W G, ZHANG F Q, et al. Evolution of wire+arc additive manufactured titanium alloy during solidification process based on CAFE simulation[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(9):1775-1783. (in Chinese) [11] 张炼, 张兆栋, 刘黎明. 316不锈钢TIG电弧增材制造成形规律研究[J]. 焊接技术, 2018, 47(4):10-14. ZHANG L, ZHANG Z D, LIU L M. Study on forming principles for TIG-based wire and arc additive manufacturing of 316 stainless steel[J]. Welding Technology, 2018, 47(4):10-14. (in Chinese) [12] 朱士一, 高建成, 张海鸥, 等. 23Co13Ni11Cr3Mo钢电弧微铸锻增材制造组织性能研究[J]. 新技术与新工艺, 2018(8):59-62. ZHU S Y, GAO J C, ZHANG H O, et al. Research on structure property of 23Co13Ni11Cr3Mo steel formed by wire arc micro casting additive manufacture[J]. New Technology & New Process, 2018(8):59-62. (in Chinese) [13] 杨海欧, 王健, 王冲, 等. 电弧增材制造TC4钛合金宏观晶粒演化规律[J]. 材料导报, 2018, 32(6):2028-2031. YANG H O, WANG J, WANG C, et al. Macrostructure evolution of TC4 titanium alloy fabricated by wire and arc additive manufacturing[J]. Materials Review, 2018, 32(6):2028-2031. (in Chinese) [14] 杨平华, 高祥熙, 梁菁, 等. 金属增材制造技术发展动向及无损检测研究进展[J]. 材料工程, 2017, 45(9):13-21. YANG P H, GAO X X, LIANG J, et al. Development tread and NDT progress of metal additive manufacture technique[J]. Journal of Materials Engineering, 2017, 45(9):13-21. (in Chinese) [15] 雷洋洋, 熊俊, 李蓉, 等. 基板厚度对薄壁件GMA增材制造温度场的影响[J]. 焊接学报, 2018, 39(5):73-76. LEI Y Y, XIONG J, LI R, et al. Influence of substrate thickness on the thermal process for thin-walled part in GMA-based additive manufacturing[J]. Transactions of the China Welding Institution, 2018, 39(5):73-76. (in Chinese) [16] OGINO Y, ASAI S, HIRATA Y. Numerical simulation of WAAM process by a GMAW weld pool model[J]. Welding in the World, 2018, 62(2):393-401. [17] LIU Y B, SUN Q J, SANG H B, et al. Microstructure and mechanical properties of additive manufactured steel-Al structure materials with nickel gradient layers[J]. China Welding, 2016, 25(1):8-14. [18] NIKAM S H, JAIN N K. Three-dimensional thermal analysis of multi-layer metallic deposition by micro-plasma transferred arc process using finite element simulation[J]. Journal of Materials Processing Technology, 2017, 249:264-273. [19] 苗玉刚, 曾阳, 王腾, 等. 基于BC-MIG焊的铝/钢异种金属增材制造工艺[J]. 焊接学报, 2015, 36(7):5-8. MIAO Y G, ZENG Y, WANG T, et al. Additive manufacturing process of aluminum/steel dissimilar metal based on BC-MIG welding[J]. Transactions of the China Welding Institution, 2015, 36(7):5-8. (in Chinese) [20] 郑振太, 曹文杰, 许晓航, 等. 结合型分布带状分段移动体热源模型[J]. 焊接学报, 2010, 31(7):95-97, 104. ZHENG Z T, CAO W J, XU X H, et al. Segment-moving heat source model with strip-shape and combined distribution of heat flux[J]. Transactions of the China Welding Institution, 2010, 31(7):95-97, 104. (in Chinese) [21] 李艳军, 吴爱萍, 刘德博, 等. 2219铝合金VPTIG焊接残余应力的数值分析[J]. 清华大学学报(自然科学版), 2016, 56(10):1037-1041. LI Y J, WU A P, LIU D B, et al. Numerical simulations of welding residual stresses in VPTIG-welded joints of the 2219 aluminum alloy[J]. Journal of Tsinghua University (Science & Technology), 2016, 56(10):1037-1041. (in Chinese)