Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (2): 124-131    DOI: 10.16511/j.cnki.qhdxxb.2019.22.025
  专题:电动汽车 本期目录 | 过刊浏览 | 高级检索 |
动力保持型AMT带式制动器的动态力矩特性
李飞1,2, 宋健1, 方圣楠1, 卢正弘1, NGUYEN Truong Sinh1
1. 清华大学 汽车安全与节能国家重点实验室, 北京 100084;
2. 陆军步兵学院石家庄校区 机械化步兵系, 石家庄 050083
Dynamic torque characteristics of the band brake of a continuous automatic transmission
LI Fei1,2, SONG Jian1, FANG Shengnan1, LU Zhenghong1, NGUYEN Truong Sinh1
1. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China;
2. Department of Mechanized Infantry, Shijiazhuang School of Army Infantry Academy, Shijiazhuang 050083, China
全文: PDF(6915 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 带式制动器是动力保持型自动变速器(AMT)的换挡执行元件,其中制动带的动态力矩特性对于换挡品质至关重要。为探寻动态制动力矩与制动力的关系,该文建立了制动带静力学模型和有限元模型,设计了带式制动器样机实验台架,完成了制动鼓正反转实验,将实验结果与仿真计算结果进行了对比分析,结果表明:动态制动力矩是转速、正压力、动态摩擦系数共同作用的结果;制动鼓正转时,制动带有增力效应,制动带所产生的制动力矩较大,静态区持续时间长,制动稳定性好,而反转时无明显的静态区,线性度好,对控制有利。根据实验结果拟合得到制动带动态力矩经验公式的控制参数,可用于制动带的平滑控制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李飞
宋健
方圣楠
卢正弘
NGUYEN Truong Sinh
关键词 带式制动器制动带动态力矩特性动力保持型自动变速器    
Abstract:A band brake is the shift actuator in a continuous automatic transmission with the band brake dynamics significantly influencing the shift quality. A static model, a finite element model and tests were used to investigate the relationship between the brake torque and the braking force. Tests of a brake drum rotated clockwise and counterclockwise were compared with simulations. The results show that the dynamic braking torque is related to the rotational speed, normal force and dynamic friction coefficient. When the brake drum is rotated forward, the self-energy effect increases the braking torque generated by the brake band with a longer static zone and better braking stability. When the drum is reversed, there is no obvious static zone, while the relationship is more linear and suitable for control. The test results are used to define the control parameters of the empirical equation for the dynamic brake band braking torque for smooth control of the brake band.
Key wordsband brake    brake band    dynamic torque characteristics    continuous automatic transmission
收稿日期: 2018-12-24      出版日期: 2020-01-15
基金资助:宋健,教授,E-mail:daesj@tsinghua.edu.cn
引用本文:   
李飞, 宋健, 方圣楠, 卢正弘, NGUYEN Truong Sinh. 动力保持型AMT带式制动器的动态力矩特性[J]. 清华大学学报(自然科学版), 2020, 60(2): 124-131.
LI Fei, SONG Jian, FANG Shengnan, LU Zhenghong, NGUYEN Truong Sinh. Dynamic torque characteristics of the band brake of a continuous automatic transmission. Journal of Tsinghua University(Science and Technology), 2020, 60(2): 124-131.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.22.025  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I2/124
  表1 各部件的材料属性
  表2 制动力加载过程设置
  表3 实验台架部分器件
  表4 部分实验的拟合数据
  图1 制动带受力情况
  图2 制动器有限元模型
  图3 接触面积变化曲线
  图4 (网络版彩图)摩擦片接触应力分布及应力读取路径
  图5 接触应力随包角变化趋势
  图6 制动力矩曲线
  图7 制动力矩随制动力变化曲线
  图8 制动带实验台架
  图9 制动带执行机构控制程序流程图
  图10 制动鼓正转800r/min制动时实测曲线
  图11 正转不同转速时动态区制动力-制动力矩曲线
  图12 制动鼓正反转制动力矩变化
  图13 动态制动力矩实验结果与 有限元仿真对比(n=800r/min)
[1] 宋健, 李飞, 李锐, 等. 一种复合轮系动力保持型三挡自动变速器:ZL201510228009.2[P]. 2015-05-07. SONG J, LI F, LI R, et al. 3 Speed uninterrupted powertrain automatic mechanical transmission based on composite wheel train:ZL201510228009.2[P]. 2015-05-07. (in Chinese)
[2] 周勇. 带式制动器有限元分析与试验研究[D]. 武汉:武汉理工大学, 2007. ZHOU Y. Finite element analysis and stress measurement on the band brake[D]. Wuhan:Wuhan University of Technology, 2007. (in Chinese)
[3] 姚化利. 带式制动器的新结构与计算[J]. 船舶, 2008(6):39-43. YAO H L. New structure and calculation for band-type brake[J]. Ship and Boat, 2008(6):39-43. (in Chinese)
[4] 胡甫才, 向阳, 杨建国. 锚绞机带式制动器热-结构耦合分析[J]. 船舶工程, 2009, 31(3):27-30. HU F C, XIANG Y, YANG J G. Analysis of the thermal-structure coupling of the band brake of anchor and mooring equipment[J]. Ship Engineering, 2009, 31(3):27-30. (in Chinese)
[5] 周勇, 向阳, 胡甫才. 制动带-摩擦片摩擦接触的数值仿真[J]. 船舶工程, 2008, 30(3):33-36. ZHOU Y, XIANG Y, HU F C. Numerical simulation on the frictional contact problems of brake band-friction flake[J]. Ship Engineering, 2008, 30(3):33-36. (in Chinese)
[6] LUBRIZOL C. Design practices passenger car automatic transmissions[M]. 4th ed. New York, USA:SAE International, 2012.
[7] FUJII Y, TOBLER W E, SNYDER T D. Prediction of wet bandbrake dynamic engagement behavior part 1:Mathematical model development[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2001, 215(4):479-492.
[8] FUJII Y, TOBLER W E, SNYDER T D. Prediction of wet band brake dynamic engagement behavior part 2:Experimental model validation[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2001, 215(4):603-611.
[9] GU X M, TAKABAYASHI H, FUJII T. Latest technologies applied to automatic transmission Maji-band[C]//2006 SAE World Congress. Detroit, USA:SAE, 2006(4):3-6.
[10] 余志生. 汽车理论[M]. 5版. 北京:机械工业出版社, 2009. YU Z S. Theory of automobile[M]. 5th ed. Beijing:China Machine Press, 2009. (in Chinese)
[11] ZHENG Q.Modeling and control of powertrains with stepped automatic transmissions[D].Columbus, USA:Ohio State University, 1999.
[12] 何忠波. 重型车辆AMT换挡品质控制和控制策略研究[D]. 北京:北京理工大学, 2003. HE Z B. Study on shift quality control and shift strategies of heavy loaded truck with AMT[D]. Beijing:Beijing Institute of Technology, 2003. (in Chinese)
[13] 温诗铸.摩擦学原理[M].北京:清华大学出版社, 1990. WEN S Z. Tribology principle[M]. Beijing:Tsinghua University Press, 1990. (in Chinese)
[14] 王玉海.拟人式自动变速系统控制方法研究与控制器开发[D].北京:清华大学, 2005. WANG Y H. Research on artificial control strategy for automated mechanical transmission and controller design[D]. Beijing:Tsinghua University, 2005. (in Chinese)
[1] 李飞, 宋健, 方圣楠, 卢正弘, NGUYEN Truong Sinh. 带式制动器动态制动力矩特性[J]. 清华大学学报(自然科学版), 2020, 60(11): 887-894.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn