Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2019, Vol. 59 Issue (12): 999-1005    DOI: 10.16511/j.cnki.qhdxxb.2019.22.036
  水利水电工程 本期目录 | 过刊浏览 | 高级检索 |
明渠湍流对数律的诊断函数分析
钟强1,2, 郑枫川1, 杨宇晨1, 邓兆宇1
1. 中国农业大学 水利与土木工程学院, 北京 100083;
2. 中国农业大学 北京市供水管网系统安全与节能工程技术研究中心, 北京 100083
Diagnostic function analysis of the logarithmic law in open channel turbulence
ZHONG Qiang1,2, ZHENG Fengchuan1, YANG Yuchen1, DENG Zhaoyu1
1. College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China;
2. Beijing Engineering Research Center of Safety and Energy Saving Technology for Water Supply Network System, China Agricultural University, Beijing 100083, China
全文: PDF(4231 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 明渠水力学的传统观点认为,明渠湍流平均流速分布的对数律是与Reynolds数和Froude数无关的普适律。由于Karman常数与摩阻流速难以分离,且平均流速分布与对数律的偏离是一个渐进过程,因此导致目前对对数区的范围以及Karman常数的取值存在较大争议。该文引入诊断函数分析了高频粒子图像测速系统(PIV)测量所得光滑明渠恒定均匀湍流数据。当平均流速分布严格满足对数律时,诊断函数为常数。分析结果表明,在该实验的Reynolds数条件下,诊断函数在全水深都不存在水平段,即平均流速分布没有严格意义的对数区。根据实验和直接数值模拟的结果趋势推测,随着Reynolds数增加,流速分布将会出现严格意义的对数区,并且其范围会逐渐增大。当Reynolds数足够大时,明渠湍流的Karman常数将落在0.334和0.415之间,对数区范围将小于76 < y+ < 0.5 Reτ
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钟强
郑枫川
杨宇晨
邓兆宇
关键词 明渠湍流Reynolds数对数律诊断函数    
Abstract:The logarithmic law is generally accepted to be a universal law for turbulent open channel flows independent of the Reynolds number and Froude number. However, the thickness of the logarithmic area and the value of the Karman constant are still being debated due to the inseparability of the Karman constant and the friction velocity and the gradual changes in the relationship between the mean velocity distribution and the logarithmic law. A diagnostic function is developed in this study to separate the Karman constant and the friction velocity in particle image velocimetry (PIV) data for open channel flows. The diagnostic function for the experimental data shows that the mean velocity distributions have no strict logarithmic region. According to the results of experiments and direct numerical simulation (DNS), the logarithmic region appears only when the Reynolds number is large enough and is within 76 < y+ < 0.5 Reτ. The Karman constant is then between 0.334 and 0.415.
Key wordsopen channel    turbulent flow    Reynolds number    logarithmic law    diagnostic function
收稿日期: 2019-03-15      出版日期: 2019-12-19
引用本文:   
钟强, 郑枫川, 杨宇晨, 邓兆宇. 明渠湍流对数律的诊断函数分析[J]. 清华大学学报(自然科学版), 2019, 59(12): 999-1005.
ZHONG Qiang, ZHENG Fengchuan, YANG Yuchen, DENG Zhaoyu. Diagnostic function analysis of the logarithmic law in open channel turbulence. Journal of Tsinghua University(Science and Technology), 2019, 59(12): 999-1005.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.22.036  或          http://jst.tsinghuajournals.com/CN/Y2019/V59/I12/999
  图1 明渠湍流恒定均匀流分区
  图2 ( 网络版彩图) 各测次时均流速分布
  图3 (网络版彩图)垂向紊动强度分布 Reynolds 应力分布
  图4 ( 网络版彩图) 诊断函数分布(y+)
  图5 ( 网络版彩图) 诊断函数分布(y/h)
  图6 诊断函数的极值位置与对应的 Karman 常数
  表1 实验水流条件
  表2 PIV 系统参数设置
  表3 诊断函数极小值数据
  表4 诊断函数极大值数据
[1] POPE S B. Turbulent flows[M]. Cambridge, UK:Cambridge University Press, 2000.
[2] 钟强, 王兴奎, 苗蔚, 等. 高分辨率粒子示踪测速技术在光滑明渠紊流黏性底层测量中的应用[J]. 水利学报, 2014, 45(5):513-520. ZHONG Q, WANG X K, MIAO W, et al. High resolution PTV system and its application in the measurement in viscous sub layer in smooth open channel flow[J]. Journal of Hydraulic Engineering, 2014, 45(5):513-520. (in Chinese)
[3] NEZU I, RODI W. Open-channel flow measurements with a laser Doppler anemometer[J]. Journal of Hydraulic Engineering, 1986, 112(5):335-355.
[4] CARDOSO A H, GRAF W H, GUST G. Uniform flow in a smooth open channel[J]. Journal of Hydraulic Research, 1989, 27(5):603-616.
[5] NEZU I. Open-channel flow turbulence and its research prospect in the 21st century[J]. Journal of Hydraulic Engineering, 2005, 131(4):229-246.
[6] 刘春晶, 李丹勋, 王兴奎. 明渠均匀流的摩阻流速及流速分布[J]. 水利学报, 2005, 36(8):950-955. LIU C J, LI D X, WANG X K. Experimental study on friction velocity and velocity profile of open channel flow[J]. Journal of Hydraulic Engineering, 2005, 36(8):950-955. (in Chinese)
[7] CHOW V T. Open-channel hydraulics[M]. New York, USA:McGraw-Hill, 1959:182-192.
[8] 王殿常, 王兴奎, 李丹勋. 明渠时均流速分布公式对比及影响因素分析[J]. 泥沙研究, 1998(3):86-90. WANG D C, WANG X K, LI D X. Comparison of velocity distribution formulas and analysis of influencing factors in open channel flow[J]. Journal of Sediment Research, 1998(3):86-90. (in Chinese)
[9] ROUSSINOVA V, BISWAS N, BALACHANDAR R. Revisiting turbulence in smooth uniform open channel flow[J]. Journal of Hydraulic Research, 2008, 46(S1):36-48.
[10] ZHONG Q, CHEN Q G, WANG H, et al. Statistical analysis of turbulent super-streamwise vortices based on observations of streaky structures near the free surface in the smooth open channel flow[J]. Water Resources Research, 2016, 52(5):3563-3578.
[11] 钟强. 明渠紊流不同尺度相干结构实验研究[D]. 北京:清华大学, 2014. ZHONG Q. Experimental study on diverse scale coherent structures in open channel flows[D]. Beijing:Tsinghua University, 2014. (in Chinese)
[12] ADRIAN R J, WESTERWEEL J. Particle image velocimetry[M]. Cambridge, UK:Cambridge University Press, 2011.
[13] ÖSTERLUND J M, JOHANSSON A V, NAGIB H M, et al. Wall shear stress measurements in high Reynolds number boundary layers from two facilities[C]//Proceedings of the 30th AIAA Fluid Dynamics Conference. Norfolk, USA:AIAA, 1999:99-3814.
[14] ÖSTERLUND J M, JOHANSSON A V, NAGIB H M, et al. A note on the overlap region in turbulent boundary layers[J]. Physics of Fluids, 2000, 12(1):1-4.
[15] WOSNIK M, CASTILLO L, GEORGE W K. A theory for turbulent pipe and channel flows[J]. Journal of Fluid Mechanics, 2000, 421:115-145.
[16] ZANOUN E S, DURST F, NAGIB H. Evaluating the law of the wall in two-dimensional fully developed turbulent channel flows[J]. Physics of Fluids, 2003, 15(10):3079-3089.
[17] SMITS A J, MCKEON B J, MARUSIC I. High-Reynolds number wall turbulence[J]. Annual Review of Fluid Mechanics, 2011, 43:353-375.
[18] LOZANO-DURÁN A, JIMÉNEZ J. Effect of the computational domain on direct simulations of turbulent channels up to Reτ=4200[J]. Physics of Fluids, 2014, 26(1):011702.
[19] KOMORI S, NAGAOSA R, MURAKAMI Y, et al. Direct numerical simulation of three-dimensional open-channel flow with zero-shear gas-liquid interface[J]. Physics of Fluids A:Fluid Dynamics, 1993, 5(1):115-125.
[20] ROUSSINOVA V, SHINNEEB A M, BALACHANDAR R. Investigation of fluid structures in a smooth open-channel flow using proper orthogonal decomposition[J]. Journal of Hydraulic Engineering, 2010, 136(3):143-154.
[21] ZHONG Q, LI D X, CHEN Q G, et al. Coherent structures and their interactions in smooth open channel flows[J]. Environmental Fluid Mechanics, 2015, 15(3):653-672.
[1] 陈文创, 张蕊, 张文远, 章晋雄, 张东. 复杂非对称岔管数值模拟中湍流模型的影响[J]. 清华大学学报(自然科学版), 2018, 58(8): 752-760.
[2] 宁涛, 顾春伟. 基于大涡模拟的圆管脉动湍流减阻数值分析[J]. 清华大学学报(自然科学版), 2017, 57(5): 511-515.
[3] 刘家宏, 周晋军, 王浩, 吕宏兴. 山地灌溉管道水力特性的数值模拟[J]. 清华大学学报(自然科学版), 2016, 56(4): 387-393.
[4] 李骁, 杨小勇, 张佑杰. HTR-10GT充装量调节特性及其机理[J]. 清华大学学报(自然科学版), 2015, 55(9): 1010-1016,1022.
[5] 吴韶华,张健. 湍流预混射流火焰直接模拟中入口条件的确定[J]. 清华大学学报(自然科学版), 2014, 54(6): 834-838.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn