Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (4): 334-340    DOI: 10.16511/j.cnki.qhdxxb.2019.22.039
  物理与物理工程 本期目录 | 过刊浏览 | 高级检索 |
基于Kalman滤波和生物传热模型的实时磁共振温度成像精度提升
吴锦超1, 仇诗涵2, 李沐恒1, 韦兴3, 陈秉耀3, 应葵1
1. 清华大学 工程物理系, 粒子技术与辐射成像教育部重点实验室, 北京 100084;
2. 清华大学 医学院, 生物医学工程系, 北京 100084;
3. 航天中心医院 骨科, 北京 100048
Kalman filtering and bio-heat transfer model based real-time MR temperature imaging for increased accuracy
WU Jinchao1, QIU Shihan2, LI Muheng1, WEI Xing3, CHEN Bingyao3, YING Kui1
1. Key Laboratory of Particle and Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
2. Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China;
3. Department of Orthopedics, Aero Space Center Hospital, Beijing 100048, China
全文: PDF(8164 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 磁共振温度成像能够为肿瘤热疗消融提供实时、全局的温度场监控,是保障消融安全、有效进行的重要技术手段。然而,临床中磁共振温度成像信噪比较低,该现象在选用快速成像序列时尤为严重。针对这一问题,该文提出了基于Kalman滤波和生物传热模型对磁共振温度成像进行滤波的方法。该方法将生物传热模型改写成Kalman滤波方法的状态转移矩阵形式,并将模拟温度和磁共振测温值相结合,以获得具有高精度和高信噪比的估计温度。临床仿真实验表明,该方法能将测温均方根误差从6℃降至2℃;仿体实验表明,测量值与真实值的均方根误差从1.927℃下降到0.735℃,且信噪比显著提升。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴锦超
仇诗涵
李沐恒
韦兴
陈秉耀
应葵
关键词 核磁共振成像磁共振温度成像生物传热模型Kalman滤波    
Abstract:Magnetic resonance temperature imaging is an important technique to ensure safe and effective use of tumor hyperthermia ablation by providing real-time, global temperature field monitoring. In clinical trials, however, the signal-to-noise ratio (SNR) of magnetic resonance temperature imaging is relatively low, with the signal quality degrading more with fast imaging sequences. To solve this problem, a bio-heat transfer based Kalman filtering model is developed for magnetic resonance temperature imaging where the bio-heat transfer equation is transformed into the form of a Kalman state transition matrix. Then the simulated temperature is combined with the measured temperature to create an accurate, high SNR estimated temperature. Clinical simulations show that this method reduces the temperature measurement root mean square error from 6℃ to 2℃ and the physical phantom experiment shows that this method reduces the root mean square error of the measured temperature and the true temperature from 1.927℃ to 0.735℃ while significantly improving the SNR.
Key wordsmagnetic resonance imaging    magnetic resonance temperature imaging    bio-heat transfer model    Kalman filter
收稿日期: 2019-04-10      出版日期: 2020-04-03
基金资助:国家自然科学基金项目(61571257)
通讯作者: 应葵,副教授,E-mail:yingkui@tsinghua.edu.cn     E-mail: yingkui@tsinghua.edu.cn
引用本文:   
吴锦超, 仇诗涵, 李沐恒, 韦兴, 陈秉耀, 应葵. 基于Kalman滤波和生物传热模型的实时磁共振温度成像精度提升[J]. 清华大学学报(自然科学版), 2020, 60(4): 334-340.
WU Jinchao, QIU Shihan, LI Muheng, WEI Xing, CHEN Bingyao, YING Kui. Kalman filtering and bio-heat transfer model based real-time MR temperature imaging for increased accuracy. Journal of Tsinghua University(Science and Technology), 2020, 60(4): 334-340.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.22.039  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I4/334
  图1 (网络版彩图)温度矩阵变换成温度 列向量示意图
  图2 (网络版彩图)矩阵计算过程示意图
  图3 生物传热模型与磁共振测温 K a l ma n滤波算法
  图4 (网络版彩图)临床数据仿真实验示意图
  图5 (网络版彩图)相位模拟示意图
  图6 仿体实验设计图
  图7 (网络版彩图)临床数据仿真实验结果对比
  图8 S B S方法和 BHT G K a l ma n方法重建结果与 金标准图之间在不同时间帧的 RMS E值
  图9 (网络版彩图)仿体实验重建结果对比
  图1 0 (网络版彩图)仿体实验温度曲线
[1] IRVING J, CEPEDA M F J, VALDÉS F, et al. Microwave ablation:State-of-the-art review[J]. OncoTargets and Therapy, 2015, 8:1627-1632.
[2] RIEKE V, PAULY K B. MR thermometry[J]. Journal of Magnetic Resonance Imaging, 2008, 27(2):376-390.
[3] 刘静, 邓中山. 肿瘤热疗物理学[M]. 北京:科学出版社, 2008. LIU J, DENG Z S. Physics of tumor hyperthermia[M]. Beijing:Science Press, 2008. (in Chinese)
[4] GRISSOM W A, LUSTIG M, HOLBROOK A B, et al. Reweighted ℓ1 referenceless PRF shift thermometry[J]. Magnetic Resonance in Medicine, 2010, 64(4):1068-1077.
[5] DE SENNEVILLE B D, MOUGENOT C, MOONEN C T W. Real-time adaptive methods for treatment of mobile organs by MRI-controlled high-intensity focused ultrasound[J]. Magnetic Resonance in Medicine, 2007, 57(2):319-330.
[6] GRISSOM W A, RIEKE V, HOLBROOK A B, et al. Hybrid referenceless and multibaselinesubtraction MR thermometry for monitoring thermal therapies in moving organs[J]. Medical Physics, 2010, 37(9):5014-5026.
[7] TODD N, PAYNE A, PARKER D L. Model predictive filtering for improved temporal resolution in MRI temperature imaging[J]. Magnetic Resonance in Medicine, 2010, 63(5):1269-1279.
[8] ZHANG Y X, CHEN S, DENG K X, et al. Kalman filtered bio heat transfer model based self-adaptive hybrid magnetic resonance thermometry[J]. IEEE Transactions on Medical Imaging, 2017, 36(1):194-202.
[9] DE SENNEVILLE B D, ROUJOL S, HEY S, et al. Extended Kalman filtering for continuous volumetric MR-temperature imaging[J]. IEEE Transactions on Medical Imaging, 2013, 32(4):711-718.
[10] XUAN Y M, ROETZEL W. Bioheat equation of the human thermal system[J]. Chemical Engineering & Technology, 1997, 20(4):268-276.
[11] YUAN P. Numerical analysis of an equivalent heat transfer coefficient in a porous model for simulating a biological tissue in a hyperthermia therapy[J]. International Journal of Heat and Mass Transfer, 2009, 52(7-8):1734-1740.
[12] 杨世铭, 陶文铨. 传热学[M]. 4版. 北京:高等教育出版社, 2006. YANG S M, TAO W Q. Heat transfer[M]. 4th ed. Beijing:Higher Education Press, 2006. (in Chinese)
[13] 张贤达. 现代信号处理[M]. 北京:清华大学出版社, 1995. ZHANG X D. Modern signal processing[M]. Beijing:Tsinghua University Press, 1995. (in Chinese)
[1] 吴珊, 吴雨晨, 侯本伟, 韩宏泉. 基于Kalman滤波的供水管网水力模型用水量动态估计[J]. 清华大学学报(自然科学版), 2024, 64(2): 271-281.
[2] 张文, 丁雨林, 陈咏华, 孙振国. 基于外部视觉与机载IMU组合的爬壁机器人自主定位方法[J]. 清华大学学报(自然科学版), 2022, 62(9): 1524-1531.
[3] 孙恩鑫, 殷玉明, 辛喆, 李升波, 何举刚, 孔周维, 刘秀鹏. 微小加速度下汽车质量-道路坡度自适应估计[J]. 清华大学学报(自然科学版), 2022, 62(1): 125-132.
[4] 李睿, 李春明, 苏杰, 陈亮, 秦兆博, 边有钢. 考虑轨迹预测补偿的履带车辆滑动参数估计方法[J]. 清华大学学报(自然科学版), 2022, 62(1): 133-140.
[5] 邢海峰, 陈志勇, 张新喜, 郭美凤. MIMU在不同情况下的可观测性分析[J]. 清华大学学报(自然科学版), 2020, 60(1): 82-88.
[6] 张新喜, 张嵘, 郭美凤, 程高峰, 牛树来. 基于足绑式INS的行人导航三轴磁强计在线校准[J]. 清华大学学报(自然科学版), 2016, 56(2): 211-217.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn