Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (2): 139-146    DOI: 10.16511/j.cnki.qhdxxb.2019.22.042
  专题:电动汽车 本期目录 | 过刊浏览 | 高级检索 |
锌空燃料电池电化学阻抗等效电路模型
陈东方, 裴普成, 宋鑫, 任棚
清华大学 汽车安全与节能国家重点实验室, 北京 100084
Electrochemical impedance equivalent circuit model for zinc-air fuel cells
CHEN Dongfang, PEI Pucheng, SONG Xin, REN Peng
State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
全文: PDF(4056 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 利用等效电路模型可表示锌空燃料电池的理化过程,用于描述和解析电化学阻抗谱中的Nyquist图,但已有模型未能综合考虑阴阳极的阻抗分布。该文为区分阴阳极阻抗,提出了一种可解析阴阳极阻抗的全电池电化学阻抗模型和忽略阳极影响的简化模型。在研究电池结构参数、性能衰减、储存条件、锌电极中导电剂、空气电极结构变化对阻抗影响的实验中,验证了模型的正确性,模型拟合实验数据时卡方检验的结果均小于0.01,并应用模型解析出的电阻值分析了阻抗变化的作用机理。该模型对金属空气电池的研究具有一定意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈东方
裴普成
宋鑫
任棚
关键词 锌空燃料电池电化学阻抗等效电路模型空气电极机理    
Abstract:The physicochemical processes in zinc-air fuel cells can be represented by an equivalent circuit model. However, the impedance distribution of anode and cathode is not taken accounted in the existing models. A whole cell model including the anode and cathode impedances is presented and a simplified version is developed that neglects the effect of the anode. The influences of the cell structure, performance degradation, storage condition, conductive agent in the zinc anode, and structural changes in the air cathode on the impedance are investigated with the model fitting experimental data with chi-square test results all less than 0.01. The impedances predicted by the model are then used to analyze the impedance change mechanism. The results show that this model can be used to study metal-air batteries.
Key wordszinc-air fuel cell    electrochemical impedance    equivalent circuit model    air cathode    mechanism
收稿日期: 2019-05-08      出版日期: 2020-01-15
基金资助:裴普成,教授,E-mail:pchpei@mail.tsinghua.edu.cn
引用本文:   
陈东方, 裴普成, 宋鑫, 任棚. 锌空燃料电池电化学阻抗等效电路模型[J]. 清华大学学报(自然科学版), 2020, 60(2): 139-146.
CHEN Dongfang, PEI Pucheng, SONG Xin, REN Peng. Electrochemical impedance equivalent circuit model for zinc-air fuel cells. Journal of Tsinghua University(Science and Technology), 2020, 60(2): 139-146.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.22.042  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I2/139
  图1 (网络版彩图)锌空燃料电池的电化学阻抗等效电路模型示意图
  图2 (网络版彩图)锌空燃料电池结构及 测试装置示意图与电池实物图
  图3 电池有效反应面积对阻抗的影响
  图4 电池性能衰减前后阻抗的变化
  图5 不同储存条件对电池阻抗的影响
  图6 锌电极中导电剂对电池性能、 阻抗的影响
  图7 电解液浸泡对空气电极阻抗的影响
[1] LEE J S, TAI KIM S, CAO R G, et al. Metal-air batteries with high energy density:Li-air versus Zn-air[J]. Advanced Energy Materials, 2011, 1(1):34-50.
[2] RAHMAN M A, WANG X J, WEN C E. High energy density metal-air batteries:A review[J]. Journal of the Electrochemical Society, 2013, 160(10):A1759-A1771.
[3] PEI P C, WANG K L, MA Z. Technologies for extending zinc-air battery's cyclelife:A review[J]. Applied Energy, 2014, 128:315-324.
[4] PEI P C, MA Z, WANG K L, et al. High performance zinc air fuel cell stack[J]. Journal of Power Sources, 2014, 249:13-20.
[5] SMEDLEY S I, ZHANG X G. A regenerative zinc-air fuel cell[J]. Journal of Power Sources, 2007, 165(2):897-904.
[6] 王希忠, 姜智红, 刘伯文, 等. 车用锌空燃料电池系统开发研究[J]. 清华大学学报(自然科学版), 2013, 53(8):1150-1154. WANG X Z, JIANG Z H, LIU B W, et al. Developing a zinc-air fuel cell system for vehicle applications[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(8):1150-1154. (in Chinese)
[7] SAPKOTA P, KIM H. Zinc-air fuel cell, a potential candidate for alternative energy[J]. Journal of Industrial and Engineering Chemistry, 2009, 15(4):445-450.
[8] YANG D, TAN H T, RUI X H, et al. Electrode materials for rechargeable zinc-ion and zinc-air batteries:Current status and future perspectives[J]. Electrochemical Energy Reviews, 2019. DOI:10.1007/s41918-019-00035-5.
[9] WANG Y J, FANG B Z, ZHANG D, et al. A review of carbon-composited materials as air-electrode bifunctional electrocatalysts for metal-air batteries[J]. Electrochemical Energy Reviews, 2018, 1(1):1-34.
[10] LI Y G, DAI H J. Recent advances in zinc-air batteries[J]. Chemical Society Reviews, 2014, 43(15):5257-5275.
[11] MA Z, PEI P C, WANG K L, et al. Degradation characteristics of air cathode in zinc air fuel cells[J]. Journal of Power Sources, 2015, 274:56-64.
[12] PICHLER B, MAYER K, HACKER V. Long-term operation of perovskite-catalyzed bifunctional air electrodes in rechargeable zinc-air flow batteries[J]. Batteries & Supercaps, 2019, 2(4):387-395.
[13] PIVAC I, ŠIMIĆ B, BARBIR F. Experimental diagnostics and modeling of inductive phenomena at low frequencies in impedance spectra of proton exchange membrane fuel cells[J]. Journal of Power Sources, 2017, 365:240-248.
[14] REN P, PEI P C, LI Y H, et al. Diagnosis of water failures in proton exchange membrane fuel cell with zero-phase ohmic resistance and fixed-low-frequency impedance[J]. Applied Energy, 2019, 239:785-792.
[15] DOPP R B, CARPENTER D, MCGRATH K. Gas diffusion cathode using nanometer sized particles of transition metals for catalysis:US20110190116A1[P]. 2011-08-04.
[16] MAINAR A R, COLMENARES L C, BLÁZQUEZ J A, et al. A brief overview of secondary zinc anode development:The key of improving zinc-based energy storage systems[J]. International Journal of Energy Research, 2018, 42(3):903-918.
[17] ZHANG S S, YUAN X Z, HIN J N C, et al. A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells[J]. Journal of Power Sources, 2009, 194(2):588-600.
[18] CIFRAIN M, KORDESCH K V. Advances, aging mechanism and lifetime in AFCs with circulating electrolytes[J]. Journal of Power Sources, 2004, 127(1-2):234-242.
[19] HOPKINS B J, SHAO-HORN Y, HART D P. Suppressing corrosion in primary aluminum-air batteries via oil displacement[J]. Science, 2018, 362(6415):658-661.
[20] 苏方远, 唐睿, 贺艳兵, 等. 用于锂离子电池的石墨烯导电剂:缘起、现状及展望[J]. 科学通报, 2017, 62(32):3743-3756. SU F Y, TANG R, HE Y B, et al. Graphene conductive additives for lithium ion batteries:Origin, progress and prospect[J]. Chinese Science Bulletin, 2017, 62(32):3743-3756. (in Chinese)
[21] MASRI M N, MOHAMAD A A. Effect of adding carbon black to a porous zinc anode in a zinc-air battery[J]. Journal of the Electrochemical Society, 2013, 160(4):A715-A721.
[22] YI J, LIANG P C, LIU X Y, et al. Challenges, mitigation strategies and perspectives in development of zinc-electrode materials and fabrication for rechargeable zinc-air batteries[J]. Energy & Environmental Science, 2018, 11(11):3075-3095.
[23] EOM S W, LEE C W, YUN M S, et al. The roles and electrochemical characterizations of activated carbon in zinc air battery cathodes[J]. Electrochimica Acta, 2006, 52(4):1592-1595.
[1] 程新月, 王昊, 李智, 周晋军. 基于OPUT的城市LID设施防涝布设方法[J]. 清华大学学报(自然科学版), 2024, 64(4): 638-648.
[2] 王昀, 胡珉, 塔娜, 孙海涛, 郭毅峰, 周武爱, 郭昱, 张皖哲, 冯建华. 大语言模型及其在政务领域的应用[J]. 清华大学学报(自然科学版), 2024, 64(4): 649-658.
[3] 王振宇, 王磊. 多策略帝王蝶优化算法及其工程应用[J]. 清华大学学报(自然科学版), 2024, 64(4): 668-678.
[4] 雷旭鹏, 杨健, 徐孟怀, 朱江, 龚旻. 自适应广义酉变换近似消息传递算法[J]. 清华大学学报(自然科学版), 2024, 64(4): 700-711.
[5] 李建, 王生海, 刘将, 高钰富, 韩广冬, 孙玉清. 绳驱动船舱清洗机器人动力学建模及鲁棒控制[J]. 清华大学学报(自然科学版), 2024, 64(3): 562-577.
[6] 蔡鲲鹏, 臧晓蓓, 陈升山, 郭飞. 推进剂管路系统深低温垫片密封性能数值分析[J]. 清华大学学报(自然科学版), 2024, 64(3): 578-590.
[7] 刘广宇, 安芃, 伍震, 胡振中. 基于本体的公路工程安全领域知识建模和应用[J]. 清华大学学报(自然科学版), 2024, 64(2): 224-234.
[8] 付汉良, 谭玉冰, 夏中境, 郭晓彤. 专家危险识别轨迹对建筑工人安全教育的影响——来自眼动实验的证据[J]. 清华大学学报(自然科学版), 2024, 64(2): 205-213.
[9] 吴珊, 吴雨晨, 侯本伟, 韩宏泉. 基于Kalman滤波的供水管网水力模型用水量动态估计[J]. 清华大学学报(自然科学版), 2024, 64(2): 271-281.
[10] 张守胜, 庄滕飞, 方星星, 朱华, 唐玮. 条形状精细纹理的触觉感知深度识别阈值[J]. 清华大学学报(自然科学版), 2024, 64(1): 135-145.
[11] 胡明昊, 王芳, 徐先涛, 罗威, 刘晓鹏, 罗准辰, 谭玉珊. 国防科技领域两阶段开放信息抽取方法[J]. 清华大学学报(自然科学版), 2023, 63(9): 1309-1316.
[12] 谢天, 于灵云, 罗常伟, 谢洪涛, 张勇东. 深度人脸伪造与检测技术综述[J]. 清华大学学报(自然科学版), 2023, 63(9): 1350-1365.
[13] 刘安邦, 陈曦, 赵千川, 李博睿. 地铁线路储能装置与牵引装置联合优化配置方法[J]. 清华大学学报(自然科学版), 2023, 63(9): 1408-1414.
[14] 马壮林, 杨兴, 胡大伟, 谭晓伟. 城市轨道交通车站客流特征影响程度分析[J]. 清华大学学报(自然科学版), 2023, 63(9): 1428-1439.
[15] 戚俊毅, 方儒卿, 吴勇民, 汤卫平, 李哲. 全固态薄膜锂电池倍率性能[J]. 清华大学学报(自然科学版), 2023, 63(9): 1440-1451.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn