Abstract:The physicochemical processes in zinc-air fuel cells can be represented by an equivalent circuit model. However, the impedance distribution of anode and cathode is not taken accounted in the existing models. A whole cell model including the anode and cathode impedances is presented and a simplified version is developed that neglects the effect of the anode. The influences of the cell structure, performance degradation, storage condition, conductive agent in the zinc anode, and structural changes in the air cathode on the impedance are investigated with the model fitting experimental data with chi-square test results all less than 0.01. The impedances predicted by the model are then used to analyze the impedance change mechanism. The results show that this model can be used to study metal-air batteries.
[1] LEE J S, TAI KIM S, CAO R G, et al. Metal-air batteries with high energy density:Li-air versus Zn-air[J]. Advanced Energy Materials, 2011, 1(1):34-50. [2] RAHMAN M A, WANG X J, WEN C E. High energy density metal-air batteries:A review[J]. Journal of the Electrochemical Society, 2013, 160(10):A1759-A1771. [3] PEI P C, WANG K L, MA Z. Technologies for extending zinc-air battery's cyclelife:A review[J]. Applied Energy, 2014, 128:315-324. [4] PEI P C, MA Z, WANG K L, et al. High performance zinc air fuel cell stack[J]. Journal of Power Sources, 2014, 249:13-20. [5] SMEDLEY S I, ZHANG X G. A regenerative zinc-air fuel cell[J]. Journal of Power Sources, 2007, 165(2):897-904. [6] 王希忠, 姜智红, 刘伯文, 等. 车用锌空燃料电池系统开发研究[J]. 清华大学学报(自然科学版), 2013, 53(8):1150-1154. WANG X Z, JIANG Z H, LIU B W, et al. Developing a zinc-air fuel cell system for vehicle applications[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(8):1150-1154. (in Chinese) [7] SAPKOTA P, KIM H. Zinc-air fuel cell, a potential candidate for alternative energy[J]. Journal of Industrial and Engineering Chemistry, 2009, 15(4):445-450. [8] YANG D, TAN H T, RUI X H, et al. Electrode materials for rechargeable zinc-ion and zinc-air batteries:Current status and future perspectives[J]. Electrochemical Energy Reviews, 2019. DOI:10.1007/s41918-019-00035-5. [9] WANG Y J, FANG B Z, ZHANG D, et al. A review of carbon-composited materials as air-electrode bifunctional electrocatalysts for metal-air batteries[J]. Electrochemical Energy Reviews, 2018, 1(1):1-34. [10] LI Y G, DAI H J. Recent advances in zinc-air batteries[J]. Chemical Society Reviews, 2014, 43(15):5257-5275. [11] MA Z, PEI P C, WANG K L, et al. Degradation characteristics of air cathode in zinc air fuel cells[J]. Journal of Power Sources, 2015, 274:56-64. [12] PICHLER B, MAYER K, HACKER V. Long-term operation of perovskite-catalyzed bifunctional air electrodes in rechargeable zinc-air flow batteries[J]. Batteries & Supercaps, 2019, 2(4):387-395. [13] PIVAC I, ŠIMIĆ B, BARBIR F. Experimental diagnostics and modeling of inductive phenomena at low frequencies in impedance spectra of proton exchange membrane fuel cells[J]. Journal of Power Sources, 2017, 365:240-248. [14] REN P, PEI P C, LI Y H, et al. Diagnosis of water failures in proton exchange membrane fuel cell with zero-phase ohmic resistance and fixed-low-frequency impedance[J]. Applied Energy, 2019, 239:785-792. [15] DOPP R B, CARPENTER D, MCGRATH K. Gas diffusion cathode using nanometer sized particles of transition metals for catalysis:US20110190116A1[P]. 2011-08-04. [16] MAINAR A R, COLMENARES L C, BLÁZQUEZ J A, et al. A brief overview of secondary zinc anode development:The key of improving zinc-based energy storage systems[J]. International Journal of Energy Research, 2018, 42(3):903-918. [17] ZHANG S S, YUAN X Z, HIN J N C, et al. A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells[J]. Journal of Power Sources, 2009, 194(2):588-600. [18] CIFRAIN M, KORDESCH K V. Advances, aging mechanism and lifetime in AFCs with circulating electrolytes[J]. Journal of Power Sources, 2004, 127(1-2):234-242. [19] HOPKINS B J, SHAO-HORN Y, HART D P. Suppressing corrosion in primary aluminum-air batteries via oil displacement[J]. Science, 2018, 362(6415):658-661. [20] 苏方远, 唐睿, 贺艳兵, 等. 用于锂离子电池的石墨烯导电剂:缘起、现状及展望[J]. 科学通报, 2017, 62(32):3743-3756. SU F Y, TANG R, HE Y B, et al. Graphene conductive additives for lithium ion batteries:Origin, progress and prospect[J]. Chinese Science Bulletin, 2017, 62(32):3743-3756. (in Chinese) [21] MASRI M N, MOHAMAD A A. Effect of adding carbon black to a porous zinc anode in a zinc-air battery[J]. Journal of the Electrochemical Society, 2013, 160(4):A715-A721. [22] YI J, LIANG P C, LIU X Y, et al. Challenges, mitigation strategies and perspectives in development of zinc-electrode materials and fabrication for rechargeable zinc-air batteries[J]. Energy & Environmental Science, 2018, 11(11):3075-3095. [23] EOM S W, LEE C W, YUN M S, et al. The roles and electrochemical characterizations of activated carbon in zinc air battery cathodes[J]. Electrochimica Acta, 2006, 52(4):1592-1595.