Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (2): 139-146    DOI: 10.16511/j.cnki.qhdxxb.2019.22.042
  专题:电动汽车 本期目录 | 过刊浏览 | 高级检索 |
锌空燃料电池电化学阻抗等效电路模型
陈东方, 裴普成, 宋鑫, 任棚
清华大学 汽车安全与节能国家重点实验室, 北京 100084
Electrochemical impedance equivalent circuit model for zinc-air fuel cells
CHEN Dongfang, PEI Pucheng, SONG Xin, REN Peng
State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
全文: PDF(4056 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 利用等效电路模型可表示锌空燃料电池的理化过程,用于描述和解析电化学阻抗谱中的Nyquist图,但已有模型未能综合考虑阴阳极的阻抗分布。该文为区分阴阳极阻抗,提出了一种可解析阴阳极阻抗的全电池电化学阻抗模型和忽略阳极影响的简化模型。在研究电池结构参数、性能衰减、储存条件、锌电极中导电剂、空气电极结构变化对阻抗影响的实验中,验证了模型的正确性,模型拟合实验数据时卡方检验的结果均小于0.01,并应用模型解析出的电阻值分析了阻抗变化的作用机理。该模型对金属空气电池的研究具有一定意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈东方
裴普成
宋鑫
任棚
关键词 锌空燃料电池电化学阻抗等效电路模型空气电极机理    
Abstract:The physicochemical processes in zinc-air fuel cells can be represented by an equivalent circuit model. However, the impedance distribution of anode and cathode is not taken accounted in the existing models. A whole cell model including the anode and cathode impedances is presented and a simplified version is developed that neglects the effect of the anode. The influences of the cell structure, performance degradation, storage condition, conductive agent in the zinc anode, and structural changes in the air cathode on the impedance are investigated with the model fitting experimental data with chi-square test results all less than 0.01. The impedances predicted by the model are then used to analyze the impedance change mechanism. The results show that this model can be used to study metal-air batteries.
Key wordszinc-air fuel cell    electrochemical impedance    equivalent circuit model    air cathode    mechanism
收稿日期: 2019-05-08      出版日期: 2020-01-15
基金资助:裴普成,教授,E-mail:pchpei@mail.tsinghua.edu.cn
引用本文:   
陈东方, 裴普成, 宋鑫, 任棚. 锌空燃料电池电化学阻抗等效电路模型[J]. 清华大学学报(自然科学版), 2020, 60(2): 139-146.
CHEN Dongfang, PEI Pucheng, SONG Xin, REN Peng. Electrochemical impedance equivalent circuit model for zinc-air fuel cells. Journal of Tsinghua University(Science and Technology), 2020, 60(2): 139-146.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.22.042  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I2/139
  图1 (网络版彩图)锌空燃料电池的电化学阻抗等效电路模型示意图
  图2 (网络版彩图)锌空燃料电池结构及 测试装置示意图与电池实物图
  图3 电池有效反应面积对阻抗的影响
  图4 电池性能衰减前后阻抗的变化
  图5 不同储存条件对电池阻抗的影响
  图6 锌电极中导电剂对电池性能、 阻抗的影响
  图7 电解液浸泡对空气电极阻抗的影响
[1] LEE J S, TAI KIM S, CAO R G, et al. Metal-air batteries with high energy density:Li-air versus Zn-air[J]. Advanced Energy Materials, 2011, 1(1):34-50.
[2] RAHMAN M A, WANG X J, WEN C E. High energy density metal-air batteries:A review[J]. Journal of the Electrochemical Society, 2013, 160(10):A1759-A1771.
[3] PEI P C, WANG K L, MA Z. Technologies for extending zinc-air battery's cyclelife:A review[J]. Applied Energy, 2014, 128:315-324.
[4] PEI P C, MA Z, WANG K L, et al. High performance zinc air fuel cell stack[J]. Journal of Power Sources, 2014, 249:13-20.
[5] SMEDLEY S I, ZHANG X G. A regenerative zinc-air fuel cell[J]. Journal of Power Sources, 2007, 165(2):897-904.
[6] 王希忠, 姜智红, 刘伯文, 等. 车用锌空燃料电池系统开发研究[J]. 清华大学学报(自然科学版), 2013, 53(8):1150-1154. WANG X Z, JIANG Z H, LIU B W, et al. Developing a zinc-air fuel cell system for vehicle applications[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(8):1150-1154. (in Chinese)
[7] SAPKOTA P, KIM H. Zinc-air fuel cell, a potential candidate for alternative energy[J]. Journal of Industrial and Engineering Chemistry, 2009, 15(4):445-450.
[8] YANG D, TAN H T, RUI X H, et al. Electrode materials for rechargeable zinc-ion and zinc-air batteries:Current status and future perspectives[J]. Electrochemical Energy Reviews, 2019. DOI:10.1007/s41918-019-00035-5.
[9] WANG Y J, FANG B Z, ZHANG D, et al. A review of carbon-composited materials as air-electrode bifunctional electrocatalysts for metal-air batteries[J]. Electrochemical Energy Reviews, 2018, 1(1):1-34.
[10] LI Y G, DAI H J. Recent advances in zinc-air batteries[J]. Chemical Society Reviews, 2014, 43(15):5257-5275.
[11] MA Z, PEI P C, WANG K L, et al. Degradation characteristics of air cathode in zinc air fuel cells[J]. Journal of Power Sources, 2015, 274:56-64.
[12] PICHLER B, MAYER K, HACKER V. Long-term operation of perovskite-catalyzed bifunctional air electrodes in rechargeable zinc-air flow batteries[J]. Batteries & Supercaps, 2019, 2(4):387-395.
[13] PIVAC I, ŠIMIĆ B, BARBIR F. Experimental diagnostics and modeling of inductive phenomena at low frequencies in impedance spectra of proton exchange membrane fuel cells[J]. Journal of Power Sources, 2017, 365:240-248.
[14] REN P, PEI P C, LI Y H, et al. Diagnosis of water failures in proton exchange membrane fuel cell with zero-phase ohmic resistance and fixed-low-frequency impedance[J]. Applied Energy, 2019, 239:785-792.
[15] DOPP R B, CARPENTER D, MCGRATH K. Gas diffusion cathode using nanometer sized particles of transition metals for catalysis:US20110190116A1[P]. 2011-08-04.
[16] MAINAR A R, COLMENARES L C, BLÁZQUEZ J A, et al. A brief overview of secondary zinc anode development:The key of improving zinc-based energy storage systems[J]. International Journal of Energy Research, 2018, 42(3):903-918.
[17] ZHANG S S, YUAN X Z, HIN J N C, et al. A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells[J]. Journal of Power Sources, 2009, 194(2):588-600.
[18] CIFRAIN M, KORDESCH K V. Advances, aging mechanism and lifetime in AFCs with circulating electrolytes[J]. Journal of Power Sources, 2004, 127(1-2):234-242.
[19] HOPKINS B J, SHAO-HORN Y, HART D P. Suppressing corrosion in primary aluminum-air batteries via oil displacement[J]. Science, 2018, 362(6415):658-661.
[20] 苏方远, 唐睿, 贺艳兵, 等. 用于锂离子电池的石墨烯导电剂:缘起、现状及展望[J]. 科学通报, 2017, 62(32):3743-3756. SU F Y, TANG R, HE Y B, et al. Graphene conductive additives for lithium ion batteries:Origin, progress and prospect[J]. Chinese Science Bulletin, 2017, 62(32):3743-3756. (in Chinese)
[21] MASRI M N, MOHAMAD A A. Effect of adding carbon black to a porous zinc anode in a zinc-air battery[J]. Journal of the Electrochemical Society, 2013, 160(4):A715-A721.
[22] YI J, LIANG P C, LIU X Y, et al. Challenges, mitigation strategies and perspectives in development of zinc-electrode materials and fabrication for rechargeable zinc-air batteries[J]. Energy & Environmental Science, 2018, 11(11):3075-3095.
[23] EOM S W, LEE C W, YUN M S, et al. The roles and electrochemical characterizations of activated carbon in zinc air battery cathodes[J]. Electrochimica Acta, 2006, 52(4):1592-1595.
[1] 苗旭鹏, 张敏旭, 邵蓥侠, 崔斌. PS-Hybrid: 面向大规模推荐模型训练的混合通信框架[J]. 清华大学学报(自然科学版), 2022, 62(9): 1417-1425.
[2] 丁光耀, 陈启航, 徐辰, 钱卫宁, 周傲英. 大数据处理系统中面向GPU加速DNN推理的模型共享[J]. 清华大学学报(自然科学版), 2022, 62(9): 1435-1441.
[3] 张云, 梁光顺, 曹聪, 唐志勇. 基于超声波反射信号的曲轴油膜厚度测量系统[J]. 清华大学学报(自然科学版), 2022, 62(9): 1484-1491.
[4] 武诗睿, 吴丹. 基于摩擦力矩—速度曲线特定区域形状分析的LuGre摩擦参数辨识[J]. 清华大学学报(自然科学版), 2022, 62(9): 1500-1507.
[5] 马壮林, 高阳, 胡大伟, 王晋, 马飞, 熊英. 城市群绿色交通水平测度与时空演化特征实证研究[J]. 清华大学学报(自然科学版), 2022, 62(7): 1236-1250.
[6] 郇宁, 姚恩建. 城际组合出行行为建模及应用研究进展[J]. 清华大学学报(自然科学版), 2022, 62(7): 1112-1120.
[7] 原雅丽, 杨小宝, 李虹慧, 四兵锋. 突发事件下城市群内旅客城际出行方式选择行为[J]. 清华大学学报(自然科学版), 2022, 62(7): 1142-1150.
[8] 陈杨, 邓李政, 黄丽达, 陈涛, 陈建国, 袁宏永. 基于声发射监测的滑坡过程预警模型[J]. 清华大学学报(自然科学版), 2022, 62(6): 1052-1058.
[9] 王煜天, 张瑞杰, 吴军, 汪劲松. 移动式混联喷涂机器人的动力学性能波动评价[J]. 清华大学学报(自然科学版), 2022, 62(5): 971-977.
[10] 平国楼, 曾婷玉, 叶晓俊. 基于评分迭代的无监督网络流量异常检测[J]. 清华大学学报(自然科学版), 2022, 62(5): 819-824.
[11] 宋宇波, 朱靖恺, 赵灵奇, 胡爱群. 基于模型准确率的链上去中心化联邦学习模型[J]. 清华大学学报(自然科学版), 2022, 62(5): 832-841.
[12] 王译晨, 朱民. 火焰动力学及其对热声稳定性的影响[J]. 清华大学学报(自然科学版), 2022, 62(4): 785-793.
[13] 刘志, 陈恳, 徐静. 基于模型和数据驱动的机器人6D位姿估计方法[J]. 清华大学学报(自然科学版), 2022, 62(3): 391-399.
[14] 赵家琦, 张鸣, 朱煜, 成荣, 李鑫, 王磊杰, 胡楚雄. 平面电机散热器热流建模与尺寸拓扑并行优化设计[J]. 清华大学学报(自然科学版), 2022, 62(3): 400-407.
[15] 周伟, 李敏, 丘铭军, 张西龙, 柳江, 张洪波. 基于改进遗传算法的车身板件厚度优化[J]. 清华大学学报(自然科学版), 2022, 62(3): 523-532.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn