Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (2): 117-123    DOI: 10.16511/j.cnki.qhdxxb.2019.22.044
  专题:电动汽车 本期目录 | 过刊浏览 | 高级检索 |
基于轮胎侧偏的差动转向及控制
宋健, 赵文宗, 戴亚奇, 程帅, 李飞
清华大学 汽车安全与节能国家重点实验室, 北京 100084
Control of a tire-cornering based differential steering system
SONG Jian, ZHAO Wenzong, DAI Yaqi, CHENG Shuai, LI Fei
State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
全文: PDF(1245 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 基于轮胎侧偏的差动转向是一种可用于大曲率半径转向场景的转向方式。该文建立了分布式驱动车辆的仿真模型,分析了基于轮胎侧偏的差动转向过程,建立了系统的状态方程,分析了系统的稳定性和能控性,讨论了差动转向的转向能力及其影响因素。基于稳态转向参考力矩模型,提出了一种基于模糊推理前馈补偿的控制方法。仿真结果表明:该方法可以提升系统响应的快速性,对不同车速下的转向需求均有良好的适应性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋健
赵文宗
戴亚奇
程帅
李飞
关键词 差动转向模糊推理前馈补偿转向控制轮胎侧偏特性    
Abstract:Differential steering based on the tire cornering characteristics is applicable to large-radius curves. This paper presents a model of an independently driven four wheel electric vehicle. The state-space equation for the differential steering system is used to analyze the stability and controllability and to analyze the factors influencing the steering ability. A steady-state steering torque model is used in a control method based on fuzzy inference feedforward compensation. Simulations show that the control algorithm not only improves the system response time but is also adaptable to different steering needs at different speeds.
Key wordsdifferential steering    fuzzy inference    feedforward compensation    steering control    tire cornering characteristics
收稿日期: 2019-06-17      出版日期: 2020-01-15
引用本文:   
宋健, 赵文宗, 戴亚奇, 程帅, 李飞. 基于轮胎侧偏的差动转向及控制[J]. 清华大学学报(自然科学版), 2020, 60(2): 117-123.
SONG Jian, ZHAO Wenzong, DAI Yaqi, CHENG Shuai, LI Fei. Control of a tire-cornering based differential steering system. Journal of Tsinghua University(Science and Technology), 2020, 60(2): 117-123.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.22.044  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I2/117
  表1 模糊规则表
  表 2 仿真主要参数设置
  图 1 7自由度整车模型俯视图
  图 2 转向时前轴轮胎的侧偏现象
  图 3 不同侧偏特性的轮胎示例
  图 4 基于模糊前馈-反馈的转向控制系统结构
  图 5 阶跃输入下的转向系统响应
  图 6 正弦输入下的转向系统响应
  图 7 不同转向需求下系统响应
  图8 差动转向与方向盘转向系统的横摆角速度响应
  图 9 转向过程中轮胎侧偏角变化曲线
  图 1 0 车辆质心运动轨迹
[1] 王军年. 电动轮独立驱动汽车差动助力转向技术研究[D]. 长春:吉林大学, 2009. WANG J N. Study on differential drive assist steering technology for electric vehicle with independent-motorized-wheel-drive[D]. Changchun:Jilin University, 2009. (in Chinese)
[2] 景晖. 基于差动转向的分布式直驱电动汽车鲁棒控制方法研究[D]. 南京:东南大学, 2017. JING H. Robust control for four-wheel independently actuated electric vehicles based on differential steering[D]. Nanjing:Southeast University, 2017. (in Chinese)
[3] IIDA M, NAKASHIMA H, TOMIYAMA H, et al. Small-radius turning performance of an articulated vehicle by direct yaw moment control[J]. Computers and Electronics in Agriculture, 2011, 76(2):277-283.
[4] KOZLOWSKI K, PAZDERSKI D. Modeling and control of a 4-wheel skid-steering mobile robot[J]. International Journal of Applied Mathematics and Computer Science, 2004, 14(4):477-496.
[5] KANG J, KIM W, LEE J, et al. Skid steering-based control of a robotic vehicle with six in-wheel drives[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2010, 224(11):1369-1391.
[6] LUCET E, GRAND C, SALLE D, et al. Dynamic yaw and velocity control of the 6WD skid-steering mobile robot RobuROC6 using sliding mode technique[C]//Intelligent Robots and Systems. St. Louis, USA, 2009:4220-4225.
[7] CHOI J Y, KIM D H, KIM C J, et al. A study on an independent steering and driving control algorithm for 6WS/6WD vehicles[C]//International Conference on Control, Automation and Systems. Gyeonggi-do, South Korea, 2010:1491-1495.
[8] JIN C, XIONG L, YU Z, et al. Path following control for skid steering vehicles with vehicle speed adaption[J]. SAE Technical Paper, 2014, 1:2014-01-0277.
[9] ELSHAZLY O, ABO-ISMAIL A ABBAS H S, et al. Skid steering mobile robot modeling and control[C]//The 2014 UKACC 10th International Conference on Control. Loughborough, UK, 2014.
[10] ANWAR S, ZHENG B. An antilock-braking algorithm for an eddy-current-based brake-by-wire system[J]. IEEE Transactions on Vehicular Technology, 2007, 56(3):1100-1107.
[11] HE P, HORI Y. Optimum traction force distribution for stability improvement of 4WD EV in critical driving condition[C]//9th IEEE International Workshop on Advanced Motion Control. Istanbul, Turkey, 2006.
[12] MOKHIAMAR O, ABE M. Simultaneous optimal distribution of lateral and longitudinal tire forces for the model following control[J]. Journal of Dynamic Systems Measurement and Control:Transactions of the ASME, 2004, 126(4):753-763.
[13] TAEHYUN S, SEHYUN C, SEOK L. Investigation of sliding-surface design on the performance of sliding mode controller in antilock braking systems[J]. IEEE Transactions on Vehicular Technology, 2008, 57(2):747-759.
[14] PACEJKA H B, BESSELINK I J M. Magic formula tire model with transient properties[J]. Vehicle System Dynamics, 1997, 27(S1):234-249.
[15] 余志生. 汽车理论[M]. 北京:机械工业出版社, 2009:148. YU Z S. Automobile theory[M]. Beijing:China Machine Press, 2009:148. (in Chinese)
[16] KODAGODA K R S, WIJESOMA W S, TEOH E K. Fuzzy speed and steering control of an AGV[J]. IEEE Transactions on Control Systems Technology, 2002, 10(1):112-120.
[17] ZHANG J, ZHANG Y, CHEN L, et al. A fuzzy control strategy and optimization for four wheel steering system[C]//IEEE International Conference on Vehicular Electronics and Safety. Beijing, 2008.
[1] 陈洪昕, 崔健, 张佐, 姚丹亚. 基于自然语言处理的交通拥堵程度评价[J]. 清华大学学报(自然科学版), 2016, 56(3): 287-293.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn