Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2019, Vol. 59 Issue (6): 490-496    DOI: 10.16511/j.cnki.qhdxxb.2019.25.001
  汽车工程 本期目录 | 过刊浏览 | 高级检索 |
基于流场偏差分析的燃料电池空压机优化设计
邵高鹏, 张扬军
清华大学 汽车工程系, 北京 100084
Optimization design of a fuel cell air compressor based on a flow field deviation analysis
SHAO Gaopeng, ZHANG Yangjun
Department of Automotive Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(3432 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 燃料电池汽车是新能源汽车发展的重要方向。离心空压机具有效率高、响应快等优点,是当前车用燃料电池空压机研发的重点。非设计工况性能差是离心空压机设计面临的主要难点。该文提出了流场偏差分析的方法,对比研究了离心空压机在非设计工况和设计工况下内部的三维流动,揭示了在非设计工况下主叶片吸力面上出现大尺度的流动分离导致非设计工况性能下降的重要因素。提出了以非设计工况和设计工况主叶片吸力面上的压力分布偏差作为离心空压机非设计工况性能优化的目标,利用正交试验法设计了不同的方案,对离心空压机的叶片后弯角、前掠角和扩压器长度进行了优化。实验结果表明:优化后的空压机在全工况上有2%的效率提升,在低流量工况下效率提升了5%,证明了流场偏差分析优化方法的有效性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邵高鹏
张扬军
关键词 燃料电池离心空压机流场偏差分析吸力面压力分布正交试验法    
Abstract:Fuel cell vehicles, an important class of new energy vehicles, use compressors to increase the inlet pressure into the fuel cell. The high efficiency and fast response of centrifugal compressors make them an ideal option for the compressors used in fuel cell vehicles. However, centrifugal air compressors have poor off-design performance. Flow field deviation analyses were used here to study the three-dimensional flow distributions inside a centrifugal air compressor for design and off-design conditions. The flow separation on the suction surface of the main blade for off-design conditions is shown to be the main factor leading to the poor performance. The pressure distribution change on the suction surface of the main blade between the off-design and design conditions is then used as the optimization objective to improve the centrifugal air compressor design. The analyses consider various back sweep angles, forward lean angles and vaneless diffuser lengths. The optimized air compressor efficiency is improved by 2% at the design working condition and 5% at the near-stall working condition. Thus, this optimization method using flow field deviation analyses is proven to be effective.
Key wordsfuel cell vehicle    flow field deviation    pressure distribution on suction side    orthogonal test
收稿日期: 2018-08-15      出版日期: 2019-06-01
基金资助:国家重点研发项目(SQ2018YFB010481)
通讯作者: 张扬军,教授,E-mail:yjzhang@tsinghua.edu.cn     E-mail: yjzhang@tsinghua.edu.cn
引用本文:   
邵高鹏, 张扬军. 基于流场偏差分析的燃料电池空压机优化设计[J]. 清华大学学报(自然科学版), 2019, 59(6): 490-496.
SHAO Gaopeng, ZHANG Yangjun. Optimization design of a fuel cell air compressor based on a flow field deviation analysis. Journal of Tsinghua University(Science and Technology), 2019, 59(6): 490-496.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.25.001  或          http://jst.tsinghuajournals.com/CN/Y2019/V59/I6/490
  图1 离心空压机流场偏差分析示意图
  图2 离心空压机效率 流量曲线
  图3 (网络版彩图)离心空压机近失速工况流场
  图4 (网络版彩图)离心空压机近失速工况与设计工况流场偏差
  图5 (网络版彩图)近失速工况与设计工况不同叶高上静压偏差图
  图6 (网络版彩图)离心空压机不同叶高上 Ma数偏差图
  图7 (网络版彩图)离心空压机不同叶高截面上熵偏差图
  图8 (网络版彩图)离心空压机近失速工况与设计工况叶片吸力面流线图
  表1 正交试验不同参数不同水平取值
  表2 正交试验方案对应参数取值
  表3 不同方案设计与近失速点气动性能
  表4 不同方案对应全工况效率
  表5 不同方案吸力面静压相关系数
  图9 优化结果与原型压比 流量曲线对比
  图10 优化结果与原型效率 流量曲线对比
[1] BORTHWICK W K D. The European Union approach to fuel cell development[J]. Journal of Power Sources, 2000, 86(1-2):52-56.
[2] AHLUWALIA R K, WANG X H. Fuel cell systems for transportation:Status and trends[J]. Journal of Power Sources, 2008, 177(1):167-176.
[3] PISCHINGER S, SCHÖNFELDER C, OGRZEWALLA J. Analysis of dynamic requirements for fuel cell systems for vehicle applications[J]. Journal of Power Sources, 2006, 154(2):420-427.
[4] PHILIPPS F, SIMONS G, SCHIEFE K. Dynamic investigation of PEFC stacks in interaction with the air supply system[J]. Journal of Power Sources, 2005, 154(2):412-419.
[5] BAO C, OUYANG M G, YI B L. Modeling and control of air stream and hydrogen flow with recirculation in a PEM fuel cell system-Ⅱ. Linear and adaptive nonlinear control[J]. International Journal of Hydrogen Energy, 2006, 31(13):1897-1913.
[6] BLUNIER B, MIRAOUI A. Proton exchange membrane fuel cell air management in automotive applications[J]. Journal of Fuel Cell Science and Technology, 2010, 7(4):041007.
[7] GELFI S, STEFANOPOULOU A G, PUKRUSHPAN J T, et al. Dynamics of low-pressure and high-pressure fuel cell air supply systems[C]//Proceedings of the 2003 American Control Conference, 2003. Denver, CO, USA:IEEE, 2003:2049-2054.
[8] WIARTALLA A, PISCHINGER S, BORNSCHEUER W, et al. Compressor expander units for fuel cell systems[J]. International Journal of Energy Research, 2000, 37(10):1141-1143.
[9] GERKEN D T, CALHOUN J. Design review of cast aluminum scroll compressor components[C]//SAE 2000 World Congress. SAE. DOI:10.4271/2000-01-0761.
[10] WESTPHALEN D, FORNI R, MURPHY W, et al. Development of a scroll compressor/expander module for pressurization of 50kW automotive fuel cell systems[R]. FY 2000 Progress Report, 2000.
[11] KULP G W, NELSON D J. A comparison of two fuel cell air compression systems at low load[C]//Future Transportation Technology Conference & Exposition. SAE. 2001.
[12] GEE M K. Turbocompressor for PEM fuel cells[Z]. FY 2002 Progress Report, 2002.
[13] SPAKOVSZKY Z S, WEIGL H J, PADUANO J D, et al. Rotating stall control in a high-speed stage with inlet distortion:Part I-radial distortion[J]. Journal of Turbomachinery, 1999, 121(3):510-516.
[14] GREITZER E M. Surge and rotating stall in axial flow compressors-Part Ⅱ:Experimental results and comparison with theory[J]. Journal of Engineering for Power, 1976, 98(2):199-211.
[15] CHO S Y, AHN K Y, LEE Y D, et al. Optimal design of a centrifugal compressor impeller using evolutionary algorithms[J]. Mathematical Problems in Engineering, 2012, 2012:752931.
[16] FISHER F B. Application of map width enhancement devices to turbocharger compressor stages[C]//39th Annual Earthmoving Industry Conference, 1998.
[17] HUNZIKER R, DICKMANN P, EMMRICH R. Numerical and experimental investigation of a centrifugal compressor with an inducer casing bleed system[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy, 2001, 215(6):783-791.
[18] 覃文洁, 胡春光, 郭良平, 等. 近壁面网格尺寸对湍流计算的影响[J]. 北京理工大学学报, 2006, 26(5):388-392.QIN W J, HU C G, GUO L P, et al. Effect of near-wall grid size on turbulent flow solutions[J]. Transactions of Beijing Institute of Technology, 2006, 26(5):388-392. (in Chinese)
[19] 陈浮, 宋彦萍, 冯国泰. 掠叶片对压气机叶栅流场性能的影响[J]. 工程热物理学报, 2003, 24(4):586-588.CHEN F, SONG Y P, FENG G T. The sweep effect on compressor cascade performance[J]. Journal of Engineering Thermophysics, 2003, 24(4):586-588. (in Chinese)
[20] PEEL G M, PARKER G A. Initial investigations into the dynamics of cutting brushes for sweeping[J]. Journal of Dynamic Systems, Measurement, and Control, 2002, 124(4):675-681.
[21] 丛小青, 周日, 韩泳涛, 等. 基于CFX正交试验的深井离心泵导叶的优化设计[J]. 流体机械, 2015, 43(9):22-25, 21.CONG X Q, ZHOU R, HAN Y T, et al. Optimization design of deep well centrifugal pump based on CFX orthogonal test[J]. Fluid Machinery, 2015, 43(9):22-25, 21. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn