Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2019, Vol. 59 Issue (5): 394-402    DOI: 10.16511/j.cnki.qhdxxb.2019.25.004
  自动化 本期目录 | 过刊浏览 | 高级检索 |
基于FPAA模拟神经网络的快速预测控制算法
徐祖华, 黄彦春, 陈铭豪, 赵均, 邵之江
浙江大学 控制科学与工程学院, 流程生产质量优化与控制国际联合研究中心, 杭州 310027
Fast predictive control algorithm based on an FPAA analog neural network
XU Zuhua, HUANG Yanchun, CHEN Minghao, ZHAO Jun, SHAO Zhijiang
National Center for International Research on Quality-Targeted Process Optimization and Control, College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
全文: PDF(4711 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对模型预测控制(model predictive control,MPC)优化求解中占用资源较多、实时性较低且实现相对复杂的问题,该文提出了一种基于现场可编程模拟阵列(field programmable analog array,FPAA)模拟神经网络的快速模型预测控制算法。通过FPAA模拟电路来实现基于连续神经网络的二次规划求解,有效规避了离散神经网络的收敛性问题,具有求解速度快、占用资源小、简单易实现的特点;通过平移变换和尺度变换方法,解决FPAA模拟电路的信号限制。最后该文给出了FPAA模拟神经网络预测控制软硬件设计方案并通过实验验证了该算法的有效性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐祖华
黄彦春
陈铭豪
赵均
邵之江
关键词 快速预测控制现场可编程模拟阵列(FPAA)模拟神经网络    
Abstract:A fast predictive control algorithm was developed for simpler, faster MPC optimization based on an FPAA analog neural network. An FPAA analog circuit provides the quadratic programming using a continuous neural network which avoids the convergence problem of discrete neural networks in a fast, simple and flexible algorithm that uses less computational resources than previous methods. The signal constraint of the FPAA analog circuit is solved by translation and scaling. The software and hardware design of the FPAA analog neural network predictive control is presented and verified in tests that show that the algorithm is effective.
Key wordsfast model predictive control    field programmable analog array (FPAA)    analog neural network
收稿日期: 2018-09-27      出版日期: 2019-05-14
基金资助:国家重点研发计划资助项目(2017YFA0700300);NSFC-浙江两化融合联合基金资助项目(U1509209);国家自然科学基金资助项目(61773340);中央高校基本科研业务费专项(2018QNA5011)
通讯作者: 赵均,副教授,E-mail:jzhao@zju.edu.cn     E-mail: jzhao@zju.edu.cn
引用本文:   
徐祖华, 黄彦春, 陈铭豪, 赵均, 邵之江. 基于FPAA模拟神经网络的快速预测控制算法[J]. 清华大学学报(自然科学版), 2019, 59(5): 394-402.
XU Zuhua, HUANG Yanchun, CHEN Minghao, ZHAO Jun, SHAO Zhijiang. Fast predictive control algorithm based on an FPAA analog neural network. Journal of Tsinghua University(Science and Technology), 2019, 59(5): 394-402.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.25.004  或          http://jst.tsinghuajournals.com/CN/Y2019/V59/I5/394
  图1 FPAA结构示意图
  图2 基于 FPAA的模拟电路设计流程
  图3 硬件平台架构示意图
  图4 软件架构示意图
  图5 (网络版彩图)基于 FPAA的模拟电路原理图
  图6 (网络版彩图)AnadigmDesigner2的simulator仿真
  表1 模拟电路 QP求解器与 QuadProgQP求解器比较
  图7 输出曲线的比较
  图8 输入曲线的比较
  图9 QP求解时间的比较
  图10 模拟电路 QP求解器与 QuadProgQP求解器的误差
  图11 SDNN模型参数的舍入误差对仿真结果的影响
  图12 饱和环节的偏差对仿真结果的影响
[1] HOPFIELD J J. Neurons with graded response have collective computational properties like those of two-state neurons[J]. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81(10):3088-3092.
[2] KENNEDY M P, CHUA L O. Neural networks for nonlinear programming[J]. IEEE Transactions on Circuits and Systems, 1988, 35(5):554-562.
[3] RODRIGUEZ-VAZQUEZ A, DOMINGUEZ-CASTRO R, RUEDA A, et al. Nonlinear switched capacitor "neural" networks for optimization problems[J]. IEEE Transactions on Circuits and Systems, 1990, 37(3):384-398.
[4] ZHANG S, CONSTANTINIDES A G. Lagrange programming neural networks[J]. IEEE Transactions on Circuits and Systems Ⅱ:Analog and Digital Signal Processing, 1992, 39(7):441-452.
[5] HAM F M, KOSTANIC I. Principles of neurocomputing for science and engineering[M]. New York, USA:McGraw-Hill Higher Education, 2000.
[6] HU X L, ZHANG B. A new recurrent neural network for solving convex quadratic programming problems with an application to the k-winners-take-all problem[J]. IEEE Transactions on Neural Networks, 2009, 20(4):654-664.
[7] XIA Y S, FENG G, WANG J. A recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equations[J]. Neural Networks, 2004, 17(7):1003-1015.
[8] ZHANG Y N, WANG J. A dual neural network for convex quadratic programming subject to linear equality and inequality constraints[J]. Physics Letters A, 2002, 298(4):271-278.
[9] LIU S B, WANG J. A simplified dual neural network for quadratic programming with its KWTA application[J]. IEEE Transactions on Neural Networks, 2006, 17(6):1500-1510.
[10] DENNIS J B. Mathematical programming and electrical networks[D]. Cambridge, USA:Massachusetts Institute of Technology, 1959.
[11] CHUA L, LIN G N. Nonlinear programming without computation[J]. IEEE Transactions on Circuits and Systems, 1984, 31(2):182-188.
[12] VICHIK S, BORRELLI F. Solving linear and quadratic programs with an analog circuit[J]. Computers & Chemical Engineering, 2014, 70:160-171.
[13] TANK D W, HOPFIELD J J. Simple "neural" optimization networks:An A/D converter, signal decision circuit, and a linear programming circuit[J]. IEEE Transactions on Circuits and Systems, 1986, 33(5):533-541.
[14] VICHIK S, ARCAK M, BORRELLI F. Stability of an analog optimization circuit for quadratic programming[J]. Systems & Control Letters, 2016, 88:68-74.
[15] JIAN L, LI D W, XI Y G. Implementation of dynamic matrix control on FPGA[C]//Proceedings of the 29th Chinese Control Conference (CCC). Beijing, China:IEEE, 2010:5970-5974.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn