Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2019, Vol. 59 Issue (8): 607-613    DOI: 10.16511/j.cnki.qhdxxb.2019.26.009
  微生物岩土技术 本期目录 | 过刊浏览 | 高级检索 |
不同矿化微生物对混凝土裂缝自修复效果影响
张家广, 许顺顺, 冯涛, 赵林, 李珠
太原理工大学 建筑与土木工程学院, 太原 030024
Effect of mineralized bacteria type on concrete crack self-healing capacity
ZHANG Jiaguang, XU Shunshun, FENG Tao, ZHAO Lin, LI Zhu
College of Architecture and Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, China
全文: PDF(2820 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 微生物矿化沉积能够有效地实现混凝土的裂缝自修复,从而延长混凝土结构的服役时间,然而直接掺入混凝土的微生物成活率会显著降低。该文以高孔隙率的膨胀珍珠岩作为微生物载体,研制了具有裂缝自诊断和自修复能力的混凝土,考察了不同类型矿化微生物对混凝土裂缝自修复效果的影响,并对混凝土裂缝处沉淀物进行了微观结构分析。试验结果表明:科氏芽孢杆菌和筛选的好氧型、兼性厌氧型、厌氧型混菌均具有良好的矿化沉积能力,混凝土经修复养护28 d后裂缝修复率分别达到73.3%、83.3%、63.3%和41.5%。微观结构分析结果表明:利用不同类型矿化微生物研制的裂缝自修复混凝土的裂缝处填充物为不同形态的碳酸钙晶体。研究结果可为基于微生物矿化的混凝土裂缝自修复性能研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张家广
许顺顺
冯涛
赵林
李珠
关键词 混凝土裂缝自修复混菌矿化沉积膨胀珍珠岩    
Abstract:Microbially induced carbonate precipitation (MICP) can provide self-healing of cracks in concrete to prolong the service life of concrete structures. However, the survival rate of the bacteria incorporated into the concrete directly affects the self-healing capability. This study used concrete with a high porosity expanded perlite as the bacteria carrier which possessed excellent crack self-diagnosis and self-healing properties. The study analyzed the effects of different types of mineralized bacteria on the concrete crack self-healing and the microstructures of the crystals inside the concrete cracks. The results show that a pure culture of Bacillus cohnii and a microbial consortia of aerobic, facultative anaerobic and anaerobic bacteria both exhibited excellent healing capacities. The crack healing rates of the concrete after curing for 28 days were 73.3% for Bacillus cohnii, 83.3% for the aerobic, 63.3% for the facultative anaerobic and 41.5% for the anaerobic bacteria. The microstructure analyses show that the crystals in the concrete cracks formed by different types of mineralized bacteria were various forms of calcium carbonate crystals. The results of the present study will be useful for further studies of the crack-healing properties of concrete based on MICP.
Key wordsconcrete    self-healing    microbial consortia    microbially induced carbonate precipitation (MICP)    expanded perlite
收稿日期: 2019-01-10      出版日期: 2019-08-05
基金资助:国家自然科学基金资助项目(51708386);中国博士后科学基金资助项目(2016M591416)
通讯作者: 李珠,教授,E-mail:lizhu@tyut.edu.cn     E-mail: lizhu@tyut.edu.cn
引用本文:   
张家广, 许顺顺, 冯涛, 赵林, 李珠. 不同矿化微生物对混凝土裂缝自修复效果影响[J]. 清华大学学报(自然科学版), 2019, 59(8): 607-613.
ZHANG Jiaguang, XU Shunshun, FENG Tao, ZHAO Lin, LI Zhu. Effect of mineralized bacteria type on concrete crack self-healing capacity. Journal of Tsinghua University(Science and Technology), 2019, 59(8): 607-613.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.26.009  或          http://jst.tsinghuajournals.com/CN/Y2019/V59/I8/607
  表1 混凝土配合比
  图1 不同混菌试件修复养护28d后裂缝表观图 (a~d: 修复养护0d;e~h: 修复养护28d)
  图2 各组试块测宽点处裂缝修复率
  图3 修复养护28d裂缝最大修复宽度
  图4 各组混凝土裂缝修复率比较
  图5 各组试件裂缝处矿物晶体微观结构图
[1] JONKERS H M, THIJSSEN A, MUYZER G, et al. Application of bacteria as self-healing agent for the development of sustainable concrete[J]. Ecological Engineering, 2010, 36(2):230-235.
[2] WANG J Y, SOENS H, VERSTRAETE W, et al. Self-healing concrete by use of microencapsulated bacterial spores[J]. Cement and Concrete Research, 2014, 56:139-152.
[3] WIKTOR V, JONKERS H M. Quantification of crack-healing in novel bacteria-based self-healing concrete[J]. Cement and Concrete Composites, 2011, 33(7):763-770.
[4] WANG J Y, VAN TITTELBOOM K, DE BELIE N, et al. Use of silica gel or polyurethane immobilized bacteria for self-healing concrete[J]. Construction and Building Materials, 2012, 26(1):532-540.
[5] XU J, YAO W. Multiscale mechanical quantification of self-healing concrete incorporating non-ureolytic bacteria-based healing agent[J]. Cement and Concrete Research, 2014, 64:1-10.
[6] BANG S S, GALINAT J K, RAMAKRISHNAN V. Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii[J]. Enzyme and Microbial Technology, 2001, 28(4-5):404-409.
[7] AIMI M A R M, KHALILAH K, HANA H N, et al. Autogenous healing mortar made of alginate-encapsulated Geobacillus stearothermophilus[M]//YUSOFF M, HAMID N, ARSHAD M, et al. InCIEC 2015. Singapore:Springer, 2016:601-619.
[8] 袁晓露, 胡为民, 刘冬梅. 微生物水泥净浆的自修复性能研究[J]. 混凝土, 2015(6):114-116, 120. YUAN X L, HU W M, LIU D M. Effect of magnesium on properties of microbial cement paste[J]. Concrete, 2015(6):114-116, 120. (in Chinese)
[9] KHALIQ W, EHSAN M B. Crack healing in concrete using various bio influenced self-healing techniques[J]. Construction and Building Materials, 2016, 102:349-357.
[10] Zhang J G, Zhou A J, Liu Y Z, et al. Microbial network of the carbonate precipitation process induced by microbial consortia and the potential application to crack healing in concrete[J]. Scientific reports, 2017, 7:14600.
[11] BRENNER K, YOU L C, ARNOLD F H. Engineering microbialconsortia:A new frontier in synthetic biology[J]. Trends in Biotechnology, 2008, 26(9):483-489.
[12] DA SILVA F B, DE BELIE N, BOON N, et al. Production of non-axenic ureolytic spores for self-healing concrete applications[J]. Construction and Building Materials, 2015, 93:1034-1041.
[13] ERŞN Y C, GRUYAERT E, LOUIS G, et al. Self-protected nitrate reducing culture for intrinsic repair of concrete cracks[J]. Frontiers in Microbiology, 2015, 6:1228-1228.
[14] ZHANG J G, LIU Y Z, FENG T, et al. Immobilizing bacteria in expanded perlite for the crack self-healing in concrete[J]. Construction and Building Materials, 2017, 148:610-617.
[15] KRUMHOLZ L R, HARRIS S H, TAY S T, et al. Characterization of two subsurANCe H2-utilizing bacteria, Desulfomicrobium hypogeium sp. nov. and Acetobacterium psammolithicum sp. nov. and their ecological roles[J]. Applied and Environmental Microbiology, 1999, 65(6):2300-2306.
[16] 钱春香, 王瑞兴, 詹其伟. 微生物矿化的工程应用基础[M]. 北京:科学出版社, 2015. QIAN C X, WANG R X, ZHAN Q W. Basis of microbial mineralization applied in engineering[M]. Beijing:Science Press, 2015. (in Chinese)
[17] 冯涛. 基于膨胀珍珠岩固载微生物的混凝土裂缝抗渗水性能及自修复机理分析[D]. 太原:太原理工大学, 2018. FENG T. Analysis on anti-seepage performance and self-healing mechansim of concrete cracks based on immobilizing bacteria in expomded perlite[D]. Taiyuan:Taiyuan University of Technology, 2018. (in Chinese)
[1] 徐晶, 王先志. 低碱胶凝材料负载微生物应用于混凝土的开裂自修复[J]. 清华大学学报(自然科学版), 2019, 59(8): 601-606.
[2] 李萌, 由士权, 康绍斌, 程晓辉, 郭红仙. 砂土中混凝土裂缝的微生物封堵试验研究[J]. 清华大学学报(自然科学版), 2019, 59(8): 614-618.
[3] 申嘉荣, 徐千军. 碾压混凝土坝层面抗剪断强度的人工神经网络与模糊逻辑系统预测[J]. 清华大学学报(自然科学版), 2019, 59(5): 345-353.
[4] 丁仲聪, 安雪晖. 基于双轴图像的自密实混凝土工作性能分析[J]. 清华大学学报(自然科学版), 2018, 58(11): 979-985.
[5] 许文彬, 胡昱, 李庆斌. 乌东德大坝水工混凝土层间强度及层面处理改进措施[J]. 清华大学学报(自然科学版), 2017, 57(8): 845-850.
[6] 张增起, 石梦晓, 王强, 崔强. 等效龄期法在大体积混凝土性能预测中的准确性[J]. 清华大学学报(自然科学版), 2016, 56(8): 806-810.
[7] 刘晖, 何铭华, 辛克贵, 郭佳, 刘文. 带刚度退化的一种自复位混凝土桥墩简化分析模型[J]. 清华大学学报(自然科学版), 2016, 56(4): 341-347.
[8] 聂鼎, 安雪晖. 基于图像处理的净浆扩展度测量工具开发[J]. 清华大学学报(自然科学版), 2016, 56(12): 1249-1254.
[9] 李鹏飞, 安雪晖, 何世钦, 陈宸. 考虑混凝土损伤效应的销栓作用承载力计算模型[J]. 清华大学学报(自然科学版), 2016, 56(12): 1255-1263.
[10] 谭清华, 周侃, 韩林海. 火灾后型钢混凝土构件抗弯和轴压刚度计算方法[J]. 清华大学学报(自然科学版), 2015, 55(6): 597-603.
[11] 钱稼茹,张扬,张微敬. 双钢管高强混凝土短柱偏心受压性能试验[J]. 清华大学学报(自然科学版), 2015, 55(1): 1-7.
[12] 林鹏,胡杭,郑东,李庆斌. 大体积混凝土真实温度场演化规律试验[J]. 清华大学学报(自然科学版), 2015, 55(1): 27-32.
[13] 魏亚, 姚湘杰. 约束状态下混凝土拉伸徐变模型[J]. 清华大学学报(自然科学版), 2014, 54(5): 563-567.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn