Abstract:When increasing the spacecraft agility by optimal control, risk and benefits coexist. A method was developed to assess spacecraft agility and estimate the agility enhancement. The model analyzes the conventional eigenaxis rotation and the time-optimal rotation. Then, the reorientation time was used to define an angular acceleration envelope and an equivalent agility envelope with an agility factor and an agility curve introduced to quantitatively assess the spacecraft agility. Numerical simulations validate the reliabilities of the estimates. The results are consistent with previous research and the average reorientation time is well predicted. Thus, this method is suitable for assessing spacecraft agility.
[1] WIE B, BAILEY D, HEIBERG C. Rapid multitarget acquisition and pointing control of agile spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(1):96-104. [2] 靳瑾, 张景瑞, 刘藻珍. 航天器大角度姿态快速机动控制器参数优化设计[J]. 清华大学学报(自然科学版), 2009(2):289-292.JIN J, ZHANG J R, LIU Z Z. Optimized design of controller parameters for large angle spacecraft attitude maneuvers[J]. Journal of Tsinghua University (Science and Technology), 2009(2):289-292. (in Chinese) [3] LEMAÎTRE M, VERFAILLIE G, JOUHAUD F, et al. Selecting and scheduling observations of agile satellites[J]. Aerospace Science and Technology, 2002, 6(5):367-381. [4] CAO X, YUE C, LIU M, et al. Time efficient spacecraft maneuver using constrained torque distribution[J]. Acta Astronautica, 2016, 123:320-329. [5] 印明威, 李京阳, 宝音贺西. 敏捷卫星姿态机动的奇异最优控制[J]. 光学精密工程, 2018, 26(4):906-915.YIN M W, LI J Y, BAOYIN H X. Singular optimal control for three-axis reorientation of an agile satellite[J]. Optics and Precision Engineering, 2018, 26(4):906-915. (in Chinese) [6] YIN M, LI J, WANG X, et al. A rapid method for validation and visualization of agile earth-observation satellites scheduling[J]. Astrodynamics, 2018, 2(4):325-337. [7] KARPENKO M, PROULX R J. Experimental implementation of Riemann-Stieltjes optimal control for agile imaging satellites[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(1):144-150. [8] KING J T, KARPENKO M. A simple approach for predicting time-optimal slew capability[J]. Acta Astronautica, 2016, 120:159-170. [9] KARPENKO M, BHATT S, BEDROSSIAN N, et al. First flight results on time-optimal spacecraft slews[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(2):367-376. [10] KARPENKO M, BHATT S, BEDROSSIAN N, et al. Flight implementation of shortest-time maneuvers for imaging satellites[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(4):1069-1079. [11] 曾祥远, 龚胜平, 高云峰, 等. 非理想太阳帆航天器时间最优交会任务[J]. 清华大学学报(自然科学版), 2014, 54(9):1240-1244, 1254.ZENG X Y, GONG S P, GAO Y F, et al. Non-ideal solar sailcraft time-optimal rendezvous mission[J]. Journal of Tsinghua University (Science and Technology), 2014, 54(9):1240-1244, 1254. (in Chinese) [12] 徐利民, 张涛. 基于外扰观测器的双通道航天器姿态控制方法[J]. 清华大学学报(自然科学版), 2017, 57(6):631-636.XU L M, ZHANG T. Dual channel spacecraft attitude control method based on an external disturbance observer[J]. Journal of Tsinghua University (Science and Technology), 2017, 57(6):631-636. (in Chinese) [13] 程磊, 王天舒, 李俊峰. 挠性多体卫星姿态动力学与控制[J]. 清华大学学报(自然科学版), 2005, 45(11):1506-1509.CHENG L, WANG T S, LI J F. Attitude dynamics and control of a flexible multi-body satellite[J]. Journal of Tsinghua University (Science and Technology), 2005, 45(11):1506-1509. (in Chinese) [14] YANG H W, LI S, BAI X L. Fast homotopy method for asteroid landing trajectory optimization using approximate initial co-states[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(3):585-597. [15] ROSS I M, KARPENKO M. A review of pseudospectral optimal control:From theory to flight[J]. Annual Reviews in Control, 2012, 36(2):182-197. [16] KARPENKO M, KING J T, DENNEHY C J, et al. Agility analysis of the james webb space telescope[J]. Journal of Guidance, Control, and Dynamics, 2018, 10(1):1-12. [17] BILIMORIA K D, WIE B. Time-optimal three-axis reorientation of a rigid spacecraft[J]. Journal of Guidance, Control, and Dynamics, 1993, 16(3):446-452. [18] BAI X L, JUNKINS J L. New results for time-optimal three-axis reorientation of a rigid spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(4):1071-1076. [19] FLEMING A, SEKHAVAT P, ROSS I M. Minimum-time reorientation of a rigid body[J]. Journal of guidance, control, and dynamics, 2010, 33(1):160-170. [20] STEYN W H. Near-minimum-time eigenaxis rotation maneuvers using reaction wheels[J]. Journal of Guidance, Control, and Dynamics, 1995, 18(5):1184-1189. [21] YU Y N, MENG X Y, LI K Y, et al. Robust control of flexible spacecraft during large-angle attitude maneuver[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3):1027-1033. [22] GILL P E, MURRAY W, SAUNDERS M A. SNOPT:An SQP algorithm for large-scale constrained optimization[J]. SIAM Review, 2005, 47(1):99-131. [23] DARBY C L, HAGER W W, RAO A V. An hp-adaptive pseudospectral method for solving optimal control problems[J]. Optimal Control Applications and Methods, 2011, 32(4):476-502. [24] PATTERSON M A, RAO A V. GPOPS-Ⅱ:A MATLAB software for solving multiple-phase optimal control problems using hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming[J]. ACM Transactions on Mathematical Software (TOMS), 2014, 41(1):1-10. [25] WIE B. Singularity escape/avoidance steering logic for control moment gyro systems[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(5):948-956. [26] 沈宏良, 曹万里, 刘昶. 飞机横向敏捷性的优化计算[J]. 飞行力学, 2002, 20(1):10-13.SHEN H L, CAO W L, LIU C. An optimal algorithm of calculating the roll agility for aircraft[J]. Flight Dynamics, 2002, 20(1):10-13. (in Chinese)