Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (3): 219-226    DOI: 10.16511/j.cnki.qhdxxb.2019.26.030
  专题:航空航天与工程力学 本期目录 | 过刊浏览 | 高级检索 |
超低地球轨道卫星大气阻力预测与影响因素分析
靳旭红1,2, 黄飞1, 程晓丽1, 王强1, 王兵2
1. 中国航天空气动力技术研究院, 北京 100074;
2. 清华大学 航天航空学院, 北京 100084
Atmospheric drag on satellites flying in lower low-earth orbit
JIN Xuhong1,2, HUANG Fei1, CHENG Xiaoli1, WANG Qiang1, WANG Bing2
1. China Academy of Aerospace Aerodynamics, Beijing 100074, China;
2. School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(3630 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为了对超低地球轨道卫星的大气阻力进行有效预测和分析,该文基于自由分子流试验粒子Monte Carlo方法,通过嵌入多种国际主流大气模型,开发了一套低地球轨道任意复杂外形航天器气动特性预测的通用三维并行软件,并以GOCE卫星为研究对象,计算并分析了该卫星的大气阻力特性,研究了大气模型参数、飞行高度、轨道纬度和经度等因素对大气阻力的影响规律。结果表明:随着高度的增加,阻力急剧减小,阻力系数却单调增大,卫星阻力的预测对大气模型的敏感性增强;轨道纬度和经度变化的影响主要体现在通过影响来流大气参数而间接影响阻力系数和卫星阻力,大气温度和组分影响阻力系数,而阻力系数和来流大气密度共同决定卫星阻力;随着轨道纬度和经度的变化,卫星阻力和阻力系数均呈现非单调的波动性变化。研究表明:JB2008和DTM-2013大气模型表现相近,而USSA-1976、Jacchia-1977和NRLMSISE-00大气模型计算出的阻力都较前两者偏高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
靳旭红
黄飞
程晓丽
王强
王兵
关键词 低轨卫星大气密度模型轨道纬度轨道经度    
Abstract:The test particle Monte Carlo method for flow in the free-molecular flow regime was integrated with various state-of-the-art atmospheric models in a general, three-dimensional code to calculate the atmospheric drag for user-defined spacecraft geometries of arbitrary complexity. Then, the code was applied to the geodetic GOCE satellite to evaluate the effects of flight altitude, orbit latitude and orbit longitude on the atmospheric drag to assess the sensitivity of the satellite drag on the atmospheric model. The results show that increasing the satellite height significantly reduces the atmospheric drag while increasing the drag coefficient. The results also illustrate the sensitivity of the satellite drag prediction to the atmospheric model. The orbit latitude and longitude affect the drag coefficients and the satellite drag indirectly by changing the atmospheric temperature and the molecular mass since the satellite drag is determined by the drag coefficient and the atmospheric density. Both the satellite drag and the drag coefficients are nonlinear functions of the orbit latitude and longitude. For the conditions considered here, two newer atmospheric models, JB2008 and DTM-2013, predict similar satellite drag forces with three older models, USSA-1976, Jacchia-1977 and NRLMSISE-00, yielding comparable but somewhat larger drag predictions.
Key wordssatellites in low-earth orbit    atmospheric density model    orbit latitude    orbit longitude
收稿日期: 2019-02-24      出版日期: 2020-03-03
通讯作者: 黄飞,高级工程师,E-mail:huang05013@163.com     E-mail: huang05013@163.com
引用本文:   
靳旭红, 黄飞, 程晓丽, 王强, 王兵. 超低地球轨道卫星大气阻力预测与影响因素分析[J]. 清华大学学报(自然科学版), 2020, 60(3): 219-226.
JIN Xuhong, HUANG Fei, CHENG Xiaoli, WANG Qiang, WANG Bing. Atmospheric drag on satellites flying in lower low-earth orbit. Journal of Tsinghua University(Science and Technology), 2020, 60(3): 219-226.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.26.030  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I3/219
  图1 APSL软件
  图 2 GOCE卫星几何模型
  表1 算例校验大气参数和计算条件
  图 3 GOCE卫星阻力系数随着速度比的变化
  表 2 卫星阻力分析大气参数和计算条件
  图 4 GOCE卫星阻力特性和大气密度随着高度的变化
  图 5 GOCE卫星阻力特性和大气密度随着纬度的变化
  图 6 GOCE卫星阻力特性和大气密度随着经度的变化
[1] TAPLEY B D, BETTADPUR S, RIES J C, et al. GRACE measurements of mass variability in the Earth system[J]. Science, 2004, 305(5683):503-505.
[2] REIGBER C, LUHR H, SCHWINTZER P. CHAMP mission status[J]. Advances in Space Research, 2002, 30(2):129-134.
[3] RUMMEL R. YI W Y, STUMMER C. GOCE gravitational gradiometry[J]. Journal of Geodesy, 2011, 85(11):777-790.
[4] CANUTO E. Drag-free and attitude control for the GOCE satellite[J]. Automatica, 2008, 44(7):1766-1780.
[5] TEWARI A. Adaptive vectored thrust deorbiting of space debris[J]. Journal of Spacecraft and Rockets, 2013, 50(2):394-401.
[6] MCLAUGHLIN C A, MANCE S, LICHTENBERG T. Drag coefficient estimation in orbit determination[J]. The Journal of the Astronautical Sciences, 2011, 58(3):513-530.
[7] TITOV E, BURT J, JOSYULA E. Satellite drag uncertainties associated with atmospheric parameter variations at low earth orbits[J]. Journal of Spacecraft and Rockets, 2014, 51(3):884-892.
[8] PARDINI C, ANSELMO L, MOE K, et al. Drag and energy accommodation coefficients during sunspot maximum[J]. Advances in Space Research, 2010, 45(5):638-650.
[9] PRIETO D M, GRAZIANO B P, ROBERTS P C E. Spacecraft drag modelling[J]. Progress in Aerospace Sciences, 2014, 64:56-65.
[10] FREDO R M, KAPLAN M H. Procedure for obtaining aerodynamic properties of spacecraft[J]. Journal of Spacecraft and Rockets, 1981, 18(4):367-373.
[11] FULLER J D, TOLSON R H. Improved method for estimation of spacecraft free-molecular aerodynamic properties[J]. Journal of Spacecraft and Rockets, 2009, 46(5):938-948.
[12] BIRD G A. Molecular gas dynamics and the direct simulation of gas flows[M]. New York:Oxford University Press, 1994.
[13] LEE J W, YI M Y, HAN D I, et al. Modified view factor method for estimating molecular backscattering probability in space conditions[J]. Journal of Thermophysics and Heat Transfer, 2006, 20(2):336-341.
[14] DAVIS D H. Monte Carlo calculation of molecular flow rates through a cylindrical elbow and pipes of other shapes[J]. Journal of Applied Physics, 1960, 31(11):69-76.
[15] KLINKRAD H, KOPPENWALLNER G, JOHANNSMEIER D, et al. Free-molecular and transitional aerodynamics of spacecraft[J]. Advances in Space Research, 1995, 16(2):33-36.
[16] 靳旭红, 黄飞, 程晓丽, 等. 超低轨航天器气动特性快速预测的试验粒子Monte Carlo方法[J]. 航空学报, 2017, 38(5):120625.JIN X H, HUANG F, CHENG X L, et al. The test particle Monte Carlo method for the prediction of aerodynamic properties of spacecraft in lower LEO[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(5):120625. (in Chinese)
[17] VALLADO D A, FINKLEMAN D. A critical assessment of satellite drag and atmospheric density modeling[J]. Acta Astronautica, 2014, 95:141-165.
[18] MARCOS F A. Accuracy of atmospheric drag models at low satellite altitudes[J]. Advances in Space Research 1990, 10(3-4):417-422.
[19] COESA. USA standard atmosphere 1976[R]. Washington D C:USA Government Printing Office, 1976.
[20] JACCHIA L G. Static diffusion models of the upper atmosphere with empirical temperature profiles[J]. Smithsonian Contributions to Astrophysics, 1965, 8(9):215-257.
[21] PICONE J M, HEDIN A EF, DROB D P, et al. NRLMSISE-00 empirical model of the atmosphere:Statistical comparisons and scientific issues[J]. Journal of Geophysical Research, Journal of Geophysical Research, 2002, 107(12):1468-1483.
[22] BOWMAN B R,. TOBISKA W K, MARCOS F A, et al. A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Honolulu, USA:AIAA, 2008.
[23] BRUINSMA S. The DTM-2013 thermosphere model[J]. Journal of Space Weather and Space Climate, 2015, 5:A1.
[24] GAPOSCHKIN E M, COSTER A J. Analysis of satellite drag[J]. The Lincoln Laboratory Journal, 1988, 1:203-224.
[25] 尹凡, 马淑英, 李晶, 等. 大气阻力引起卫星轨道衰减的数值模拟[J]. 地球物理学报, 2013, 56(12):3980-3987.YIN F, MA S Y, LI J, et al. Simulation of orbit decay for LEO satellites caused by atmospheric drag[J]. Chinese Journal of Geophysics, 2013, 56(12):3980-3987. (in Chinese)
[26] 刘卫, 王荣兰, 刘四清, 等. 基于小波变换的卫星阻力系数分析[J]. 宇航学报, 2015, 36(2):142-150.LIU W, WANG R L, LIU S Q, et al. Analysis of satellite drag coefficient based on wavelet transformation[J]. Journal of Astronautics, 2015, 36(2):142-150. (in Chinese)
[27] 汪宏波, 赵长印, 柳仲贵, 等基于误差发散规律的低轨卫星大气阻力系数计算方法[J]. 天文学报, 2016, 57(4):447-460.WANG H B, ZHAO C Y, LIU Z G, et al. The method for calculating atmospheric drag coefficient based on the characteristics of along-track error in LEO orbit prediction[J]. Acta Astronomica Sinica, 2016, 57(4):447-460. (in Chinese)
[28] BIRD G A. Monte Carlo simulation of gas flows[J]. Annual Review of Fluid Mechanics, 1978, 10:11-31.
[29] MEHTA P M, MCLAUGHLIN C A, SUTTON E K. Drag coefficient modeling for grace using direct simulation Monte Carlo[J]. Advances in Space Research, 2013, 52(12):2035-2051.
[30] FAN C E, GEE C, FONG M C. Monte Carlo simulation for backscatter of outgassing molecules from simple spacecraft surfaces[J]. Journal of Spacecraft and Rocket, 1994, 31(4):649-655.
[31] 靳旭红, 黄飞, 程晓丽, 等. 航天器表面环境散射返回流TPMC模拟[J]. 计算物理, 2015, 32(5):529-536.JIN X H, HUANG F, CHENG X L, et al. Test particle Monte Carlo simulation of return flux on spacecraft surfaces due to ambient scatter of outgassing molecules[J] Chinese Journal of Computational Physics, 2015, 32(5):529-536. (in Chinese)
[32] CHAO C C, GUNNING G R, MOE K, et al. An evaluation of Jacchia 71 and MSIS90 atmosphere models with NASA ODERACS decay data[J]. Journal of the Astronautical Sciences, 1997, 45:131-141.
[33] KOPPENWALLNER G. Satellite aerodynamics and determination of thermospheric density and wind[J]. AIP Conference Proceedings, 2011, 1333:1307-1312.
[1] 朱辉, 陈思宇, 李凤华, 武衡, 赵海强, 王刚. 面向低轨卫星网络的用户随遇接入认证协议[J]. 清华大学学报(自然科学版), 2019, 59(1): 1-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn