Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2019, Vol. 59 Issue (12): 1029-1038    DOI: 10.16511/j.cnki.qhdxxb.2019.26.031
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
基于3P(4R)S主轴头的五轴混联机床的参数辨识算法
胡从军, 于广, 王立平
1. 清华大学 机械工程系, 北京 100084;
2. 精密超精密制造装备及控制北京市重点实验室, 北京 100084
Calibration of a 5-axis hybrid machine based on a 3P(4R)S spindle head
HU Congjun, YU Guang, WANG Liping
1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
2. Beijing Key Laboratory of Precision/Ultra-Precision Manufacturing Equipment and Control, Beijing 100084, China
全文: PDF(4574 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 旋转刀轴中心控制(rotational tool center point,RTCP)精度是评价五轴混联机床的重要考核指标。该文以一台基于3P(4R)S主轴头的五轴混联机床为研究对象,对该机床终端的位置和角度精度进行标定,以提高混联机床的RTCP精度;提出了一种参数辨识算法,与最小二乘法、岭估计法相比,该算法缩短了辨识运算的时间。标定实验结果表明:该算法辨识得到的参数能有效提高机床的精度,验证了该算法的有效性,为五轴混联机床的铣削加工奠定了基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡从军
于广
王立平
关键词 运动学标定参数辨识辨识算法旋转刀轴中心控制    
Abstract:The rotational tool center point(RTCP) accuracy is an important evaluation index for evaluating five-axis hybrid machine tools. This study analyzed a 5-axis hybrid machine based on 3P(4R)S spindle head and calibrated the positioning and angular precision of the machine tool terminal to improve the RTCP precision of the hybrid machine tool. This paper presents an identification algorithm, which shortens the identification time compared with the least squares method and the ridge estimation method. Calibration tests show that the parameters identified by the algorithm can effectively improve the machine tool accuracy, which verifies the algorithm effectiveness and lays a foundation for milling using a 5-axis hybrid machine tool.
Key wordskinematic calibration    parameter identification    identification algorithm    rotational tool center point (RTCP)
收稿日期: 2019-03-31      出版日期: 2019-12-19
基金资助:王立平,教授,E-mail:Lpwang@tsinghua.edu.cn
引用本文:   
胡从军, 于广, 王立平. 基于3P(4R)S主轴头的五轴混联机床的参数辨识算法[J]. 清华大学学报(自然科学版), 2019, 59(12): 1029-1038.
HU Congjun, YU Guang, WANG Liping. Calibration of a 5-axis hybrid machine based on a 3P(4R)S spindle head. Journal of Tsinghua University(Science and Technology), 2019, 59(12): 1029-1038.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.26.031  或          http://jst.tsinghuajournals.com/CN/Y2019/V59/I12/1029
  图1 五轴混联机床模型
  图2 3P(4R)S 主轴头模型
  图3 3PRS 机构简图
  图4 仿真流程图
  图5 测量点姿态分布
  图6 机构在参数补偿前终端输出误差
  图7 机构在最小二乘法辨识补偿后的终端输出误差
  图8 终端最大输出误差和参数λ之间的关系
  图9 无测量误差时的终端最大输出误差和 参数λ之间的关系
  图10 迭代50次时, 终端最大输出误差和 参数λ之间的关系
  图11 迭代误差和迭代次数的关系
  图12 机构在岭估计法辨识补偿后的终端输出误差
  图13 新的辨识算法辨识补偿后的终端输出误差
  图14 机床终端角度测量实验
  图15 机床终端位置测量实验
  图16 标定前的 RTCP 精度
  图17 参数补偿后的 RTCP 精度
  表1 误差参数
[1] 张曙. 航空结构件加工的新一代数控机床——解读Ecospeed领悟机床设计之道[J]. 金属加工(冷加工), 2012(3):2-5.ZHANG S. A new generation of CNC machine tools for aeronautical structural parts processing:interpretation of ecospeed and understanding of machine tool design[J]. Machinist Metal Cutting, 2012(3):2-5. (in Chinese)
[2] 王立平, 汪劲松. 新型并联机床的研究状况及应用前景[J]. 航空制造技术, 2004(6):26-30.WANG L P, WANG J S. Research status and application prospect of new parallel machine tools[J]. Aeronautical Manufacturing Technology, 2004(6):26-30. (in Chinese)
[3] 晋娆, 翊舟. Ecospeed F系列产品进军中国航空业[J]. 航空制造技术, 2016(11):108-109.JIN R, YI Z. Ecospeed F series products entering military china aviation industry[J]. Aeronautical Manufacturing Technology, 2016(11):108-109. (in Chinese)
[4] LIU X J, WANG J S, PRITSCHOW G. A new family of spatial 3-DoF fully-parallel manipulators with high rotational capability[J]. Mechanism and Machine Theory, 2005, 40(4):475-494.
[5] HUANG T, LI M, ZHAO X M, et al. Conceptual design and dimensional synthesis for a 3-DOF module of the trivariant-A novel 5-DOF reconfigurable hybrid robot[J]. IEEE Transactions on Robotics, 2005, 21(3):449-456.
[6] SON S, KIM T, SARMA S E, et al. A hybrid 5-axis CNC milling machine[J]. Precision Engineering, 2009, 33(4):430-446.
[7] KANAAN D, WENGER P, CHABLAT D. Kinematic analysis of a serial-parallel machine tool:The verne machine[J]. Mechanism and Machine Theory, 2009, 44(2):487-498.
[8] 张京雷. SMC35混联机床的运动学标定及其专用数控系统的研究[D]. 北京:清华大学, 2017.ZHANG J L. Research on kinematic calibration of the SMC35 hybrid machine tool and its numerical control system[D]. Beijing:Tsinghua University, 2017. (in Chinese)
[9] BI Q Z, HUANG N D, SUN C, et al. Identification and compensation of geometric errors of rotary axes on five-axis machine by on-machine measurement[J]. International Journal of Machine Tools and Manufacture, 2015, 89:182-191.
[10] 刘焕牢. 数控机床几何误差测量及误差补偿技术的研究[D]. 武汉:华中科技大学, 2005.LIU H L. Research on the geometric error measurement and error compensation of the numerical control machine tools[D]. Wuhan:Huazhong University of Science and Technology, 2005. (in Chinese)
[11] 张云峰, 李春雷. 数控机床几何误差测量及误差补偿技术的研究[J]. 科技传播, 2016, 8(5):179, 185.ZHANG Y F, LI C L. Research on the geometric error measurement and error compensation of the numerical control machine Tools[J]. Public Communication of Science & Technology, 2016, 8(5):179, 185. (in Chinese)
[12] 刘宇哲. 一类并联式摆角头的几何误差建模及标定研究[D]. 北京:清华大学, 2017.LIU Y Z. Research on the geometrical error modeling and calibration of a class of swing tool heads with parallel kinematics[D]. Beijing:Tsinghua University, 2017. (in Chinese)
[13] 陈禹臻. 一种空间三自由度关节型摆角头的误差补偿研究[D]. 北京:清华大学, 2015.CHEN Y Z. Research on the error compensation of a spacial manipulator with 3-DOF[D]. Beijing:Tsinghua University, 2015. (in Chinese)
[14] RAMESH R, MANNAN M A, POO A N. Error compensation in machine tools-A review Part I:Geometric, cutting-force induced and fixture-dependent errors[J]. International Journal of Machine Tools and Manufacture, 2000, 40(9):1235-1256.
[15] 何小妹, 丁洪生, 付铁, 等. 并联机床运动学标定研究综述[J]. 机床与液压, 2004, (10):9-11, 31.HE X M, DING H S, FU T, et al. Review on kinematic calibration of parallel kinematic machine[J]. Machine Tool & Hydraulics, 2004(10):9-11, 31. (in Chinese)
[16] SKOPEC T, ŠIKA Z, VALÁŠEK M. Calibration using adaptive model complexity for parallel and fiber-driven mechanisms[J]. Robotica, 2016, 34(6):1416-1435.
[17] 刘宇哲, 吴军, 王立平, 等. 5轴混联机床运动学标定的测量轨迹评价及误差补偿[J]. 清华大学学报(自然科学版), 2016, 56(10):1047-1054.LIU Y Z, WU J, WANG L P, et al. Measurement trajectory evaluation and error compensation for kinematic calibration of a 5-axis hybrid machine tool[J]. Journal of Tsinghua University (Science and Technology), 2016, 56(10):1047-1054. (in Chinese)
[18] 粟时平. 多轴数控机床精度建模与误差补偿方法研究[D]. 长沙:中国人民解放军国防科学技术大学, 2002.SU S P. Study on the methods of precision modeling and error compensation for multi-axis CNC machine tools[D]. Changsha:National University of Defense Technology, 2002. (in Chinese)
[19] TIAN W J, GAO W G, CHANG W F, et al. Error modeling and sensitivity analysis of a five-axis machine tool[J]. Mathematical Problems in Engineering, 2014, 2014:745250.
[20] ZI B, DING H F, WU X, et al. Error modeling and sensitivity analysis of a hybrid-driven based cable parallel manipulator[J]. Precision Engineering, 2014, 38(1):197-211.
[21] HUANG T, LI Y, TANG G B, et al. Error modeling, sensitivity analysis and assembly process of a class of 3-DOF parallel kinematic machines with parallelogram struts[J]. Science in China Series E:Technological Sciences, 2002, 45(5):467-476.
[22] LI J, YU L D, SUN J Q, et al. A kinematic model for parallel-joint coordinate measuring machine[J]. Journal of Mechanisms and Robotics, 2013, 5(4):044501.
[23] CHEBBI A H, AFFI Z, ROMDHANE L. Prediction of the pose errors produced by joints clearance for a 3-UPU parallel robot[J]. Mechanism and Machine Theory, 2009, 44(9):1768-1783.
[24] PINTO J M, ARRIETA C, ANDIA M E, et al. Sensitivity analysis of geometric errors in additive manufacturing medical models[J]. Medical Engineering & Physics, 2015, 37(3):328-334.
[25] 沈斌, 邓丽芬, 劳黎露, 等. 数控机床几何误差测量及误差补偿研究[J]. 机床与液压, 2016, 44(5):80-83.SHEN B, DENG L F, LAO L L, et al. Research of geometric error measurement and error compensation for CNC machine tools[J]. Machine Tool & Hydraulics, 2016, 44(5):80-83. (in Chinese)
[26] MAJARENA A C, SANTOLARIA J, SAMPER D, et al. Analysis and evaluation of objective functions in kinematic calibration of parallel mechanisms[J]. The International Journal of Advanced Manufacturing Technology, 2013, 66(5-8):751-76.
[27] WU J F, ZHANG R, WANG R H, et al. A systematic optimization approach for the calibration of parallel kinematics machine tools by a laser tracker[J]. International Journal of Machine Tools and Manufacture, 2014, 86:1-11.
[28] IBARAKI S, YOKAWA T, KAKINO Y, et al. Kinematic calibration on a parallel kinematic machine tool of the stewart platform by circular tests[C]//Proceedings of the 2004 American Control Conference. Boston USA:IEEE, 2004:1394-1399.
[29] BESNARD S, KHAIL W. Identifiable parameters for parallel robots kinematic calibration[C]//Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164). Seoul, South Korea:IEEE, 2001:2859-2866.
[30] BONEV, I A. Geometric analysis of parallel mechanisms[D]. Canada:Laval University, 2002.
[31] 黄鹏. 一类三自由度空间并联机器精度保证研究[D]. 北京:清华大学, 2011.HUANG P. Research on the accuracy assurance of a class of 3-DOF spacial parallel manipulators[D]. Beijing:Tsinghua University, 2011. (in Chinese)
[1] 付雯, 温浩, 黄俊珲, 孙镔轩, 陈嘉杰, 陈武, 冯跃, 段星光. 基于非线性动力学模型补偿的水下机械臂自适应滑模控制[J]. 清华大学学报(自然科学版), 2023, 63(7): 1068-1077.
[2] 武诗睿, 吴丹. 基于摩擦力矩—速度曲线特定区域形状分析的LuGre摩擦参数辨识[J]. 清华大学学报(自然科学版), 2022, 62(9): 1500-1507.
[3] 李政清, 侯森浩, 韦金昊, 唐晓强. 面向仓储物流的平面索并联机器人视觉自标定方法[J]. 清华大学学报(自然科学版), 2022, 62(9): 1508-1515.
[4] 赵彤, 郭俊杰, 吕玉红. 预紧力与非线性作用的螺栓结合部动力学特性[J]. 清华大学学报(自然科学版), 2019, 59(9): 772-779.
[5] 张婉鑫, 朱纪洪. 大迎角非定常气动参数辨识研究[J]. 清华大学学报(自然科学版), 2017, 57(7): 673-679.
[6] 刘宇哲, 吴军, 王立平, 汪劲松. 5轴混联机床运动学标定的测量轨迹评价及误差补偿[J]. 清华大学学报(自然科学版), 2016, 56(10): 1047-1054.
[7] 张辉,于长亮,王仁彻,叶佩青,梁文勇. 机床支撑地脚结合部参数辨识方法[J]. 清华大学学报(自然科学版), 2014, 54(6): 815-821.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn