Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (3): 278-284    DOI: 10.16511/j.cnki.qhdxxb.2019.26.032
  土木工程 本期目录 | 过刊浏览 | 高级检索 |
隧道内可燃液体蒸气爆燃超压缩尺寸实验研究
陈长坤1, 徐童1, 史聪灵2, 赵小龙1, 张宇伦1
1. 中南大学 防灾科学与安全技术研究所, 长沙 410075;
2. 中国安全生产科学研究院 地铁火灾与客流疏运安全北京市重点实验室, 北京 100012
Bench-scale experimental study of the deflagration overpressure of a flammable liquid vapor in a tunnel
CHEN Changkun1, XU Tong1, SHI Congling2, ZHAO Xiaolong1, ZHANG Yulun1
1. Institute of Disaster Prevention Science and Safety Technology, Central South University, Changsha 410075, China;
2. Beijing Key Laboratory of Metro Fire and Passenger Transportation Safety, China Academy of Safety Science and Technology, Beijing 100012, China
全文: PDF(7522 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为了探索隧道内可燃液体蒸气的爆燃超压及火焰传播规律,该文采用1/20的缩尺寸隧道模型,以不同液体温度(30、40、50、60、70、78℃(沸点))下蒸发产生的乙醇蒸气为爆燃介质,分析不同时间点火的引爆情况及爆燃超压等数据。结果表明:蒸气的爆炸极限受到初始液体温度的影响,当蒸气温度低时爆炸极限范围小,同时所需要的引爆能量也会变大。被引爆乙醇蒸气的超压值沿隧道纵向呈现明显的双峰形状,同时在超压曲线第1次达到峰值时,燃料盘上方压力测点P1低于远离中心位置P2、P3处的超压值。此外,隧道内爆燃超压最大值会随着乙醇蒸气浓度的增加而呈现先增大后减小的趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈长坤
徐童
史聪灵
赵小龙
张宇伦
关键词 缩尺寸隧道可燃液体蒸气爆燃超压    
Abstract:The deflagration overpressure and flame propagation of ethanol vapor were investigated in a bench-scale tunnel. The characteristics of the deflagration flame and the overpressure were measured at liquid temperatures of 30℃, 40℃, 50℃, 60℃, 70℃ and 78℃ (boiling point). The results show that the explosion limit of vapor is affected by the initial liquid temperature. At low temperatures, the explosion limit range is quite small and the required detonation energy is very large. The overpressure of the ignited vapor had an obvious double-peak shape along the longitudinal direction of the tunnel. Meanwhile, when the overpressure reached peak at the first time, the pressure measuring points P1 above the fuel pins were lower than the overpressure of P2 and P3 away from the center. In addition, with increasing ethanol vapor concentration, the maximum detonation overpressure first increased and then decreased in the tunnel.
Key wordsbench-scale tunnel    flammable liquid vapor    deflagration    overpressure
收稿日期: 2019-03-31      出版日期: 2020-03-03
基金资助:国家自然科学基金资助项目(51576212,51622403)
引用本文:   
陈长坤, 徐童, 史聪灵, 赵小龙, 张宇伦. 隧道内可燃液体蒸气爆燃超压缩尺寸实验研究[J]. 清华大学学报(自然科学版), 2020, 60(3): 278-284.
CHEN Changkun, XU Tong, SHI Congling, ZHAO Xiaolong, ZHANG Yulun. Bench-scale experimental study of the deflagration overpressure of a flammable liquid vapor in a tunnel. Journal of Tsinghua University(Science and Technology), 2020, 60(3): 278-284.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.26.032  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I3/278
  图1 1/20缩尺寸隧道模型立体图
  图2 隧道模型纵截面图
  表1 60、70、78℃液体温度下乙醇蒸气引爆情况
  图3 隧道内爆燃火焰传播过程
  图4 蒸发不同时间后点火的爆燃超压变化曲线
  图5 (网络版彩图)蒸发不同时间后点火的超压波沿隧道纵向传播变化曲线
[1] 张超, 陈晓, 陈建国, 等. 考虑应急救援的危险化学品泄漏事故后果风险评估[J]. 清华大学学报(自然科学版), 2009, 49(5):621-624. ZHANG C, CHEN X, CHEN J G, et al. Risk assessment of dangerous chemical leakage with emergency response[J]. Journal of Tsinghua University (Science and Technology), 2009, 49(5):621-624. (in Chinese)
[2] AJRASH M J, ZANGANEH J, MOGHTADERI B. Effects of ignition energy on fire and explosion characteristics of dilute hybrid fuel in ventilation air methane[J]. Journal of Loss Prevention in the Process Industries, 2016, 40:207-216.
[3] GAO W, YU J L, LI J, et al. Experimental investigation on micro-and Nano-PMMA dust explosion venting at elevated static activation overpressures[J]. Powder Technology, 2016, 301:713-722.
[4] WANG Z W, WANG Y Q, PENG C X, et al. Experimental study of pressure back-propagation in a valveless air-breathing pulse detonation engine[J]. Applied Thermal Engineering, 2017, 110:62-69.
[5] ADDAI E K, GABEL D, KRAUSE U. Explosion characteristics of three component hybrid mixtures[J]. Process Safety and Environmental Protection, 2015, 98:72-81.
[6] ZHANG B, XIU G L, BAI C H. Explosion characteristics of argon/nitrogen diluted natural gas-air mixtures[J]. Fuel, 2014, 124:125-132.
[7] ZHANG Q, QIN B, YAN H, et al. A methodology to predict shock overpressure decay in a tunnel produced by a premixed methane/air explosion[J]. Journal of Loss Prevention in the Process Industries, 2016, 44:275-281.
[8] ABDEL-RAHEEM M A, IBRAHIM S S, MALALASEKERA W, et al. Large eddy simulation of hydrogen-air premixed flames in a small scale combustion chamber[J]. International Journal of Hydrogen Energy, 2015, 40(7):3098-3109.
[9] XU C Y, CONG L X, YU Z, et al. Numerical simulation of premixed methane-air deflagration in a semi-confined obstructed chamber[J]. Journal of Loss Prevention in the Process Industries, 2015, 34:218-224.
[10] 曲国娜, 王建国, 王来贵, 等. 受限空间内CO影响瓦斯爆炸的数值模拟[J]. 煤矿安全, 2016, 47(3):9-12, 16. QU G N, WANG J G, WANG L G, et al. Numerical simulation of CO affecting gas explosion in restricted space[J]. Safety in Coal Mines, 2016, 47(3):9-12, 16. (in Chinese)
[11] ZHANG B, LIU H. The effects of large scale perturbation-generating obstacles on the propagation of detonation filled with methane-oxygen mixture[J]. Combustion and Flame, 2017, 182:279-287.
[12] RAZUS D, BRINZEA V, MITU M, et al. Explosion characteristics of LPG-air mixtures in closed vessels[J]. Journal of Hazardous Materials, 2009, 165(1-3):1248-1252.
[13] RAZUS D, BRINZEA V, MITU M, et al. Inerting effect of the combustion products on the confined deflagration of liquefied petroleum gas-air mixtures[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(4):463-468.
[14] WEI H Q, ZHAO J F, ZHOU L, et al. Effects of the equivalence ratio on turbulent flame-shock interactions in a confined space[J]. Combustion and Flame, 2017, 186:247-262.
[15] ZHANG P L, DU Y, WU S L, et al. Experiments of the secondary ignition of gasoline-air mixture in a confined tunnel[J]. Journal of Thermal Analysis and Calorimetry, 2014, 118(3):1773-1780.
[16] QI S, DU Y, ZHANG P L, et al. Experimental study of gasoline vapor deflagration in a duct with an open end[J]. Combustion and Flame, 2018, 193:16-24.
[17] ZHANG P L, DU Y, ZHOU Y, et al. Explosions of gasoline-air mixture in the tunnels containing branch configuration[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(6):1279-1284.
[18] LI G Q, DU Y, WANG S M, et al. Large eddy simulation and experimental study on vented gasoline-air mixture explosions in a semi-confined obstructed pipe[J]. Journal of Hazardous Materials, 2017, 339:131-142.
[19] KUHL A L, REICHENBACH H. Combustion effects in confined explosions[J]. Proceedings of the Combustion Institute, 2009, 32(2):2291-2298.
[20] 王成, 回岩, 胡斌斌, 等. 障碍物形状对瓦斯爆炸火焰传播过程的影响[J]. 北京理工大学学报, 2015, 35(7):661-665, 676. WANG C, HUI Y, HU B B, et al. Effect of obstacle shape on gas explosion flame propagation process[J]. Transactions of Beijing Institute of Technology, 2015, 35(7):661-665, 676. (in Chinese)
[21] 程关兵, 李俊仙, 李书明, 等. 氢气/丙烷/空气预混气体爆轰性能的实验研究[J]. 爆炸与冲击, 2015, 35(2):249-254. CHENG G B, LI J X, LI S M, et al. An experimental study on detonation characteristics of binary fuels hydrogen/propane-air mixtures[J]. Explosion and Shock Waves, 2015, 35(2):249-254. (in Chinese)
[22] 程浩力, 李睿, 刘德俊. 管道燃气爆炸特性实验研究[J]. 中国安全生产科学技术, 2010, 6(4):23-27. CHENG H L, LI R, LIU D J. Experimental study on the explosion characteristic of combustible gas in pipelines[J]. Journal of Safety Science and Technology, 2010, 6(4):23-27. (in Chinese)
[1] 吴建松, 蔡继涛, 赵亦孟, 操阅, 周睿, 庞磊. 城市综合管廊燃气爆炸传播特性实验研究[J]. 清华大学学报(自然科学版), 2022, 62(6): 987-993.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn