Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (3): 206-211    DOI: 10.16511/j.cnki.qhdxxb.2019.26.033
  专题:航空航天与工程力学 本期目录 | 过刊浏览 | 高级检索 |
预混C2H4/N2O推力室喷注面板热反侵着火现象数值模拟
王伟龙, 张会强
清华大学 航天航空学院, 北京 100084
Numerical simulations of ignition by soak-back heat through the injection panel in a premixed C2H4/N2O thruster
WANG Weilong, ZHANG Huiqiang
School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(2582 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 预混C2H4/N2O推进系统因其性能高、系统简单以及推进剂无毒而在姿轨控发动机中有重大潜在应用价值,而防止回火是其要解决的关键技术。为此,该文构建了包括集气腔、喷注面板、燃烧室和喷管的预混C2H4/N2O推进剂单喷注单元推力室,采用能够准确预测着火延迟的C2H4/N2O详细化学反应动力学机理,耦合腔室中的反应流和喷注面板中的传热过程,开展了推力室点燃和集气腔热反侵着火现象的数值模拟研究。结果表明:推力室非稳态点燃过程时空演化至稳定状态时的特征参数与化学热力平衡计算结果一致。随着喷注面板孔板面积比的减小,燃烧室通过喷注面板传给集气腔的热量显著增加,并最终能够引燃集气腔预混气。从而发现和提出一种喷注面板热反侵导致集气腔着火的机制。当采用常规设计的推力室头部时,存在喷注面板临界孔板面积比,其为预混C2H4/N2O推进系统喷注器设计提供了新的约束准则。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王伟龙
张会强
关键词 液体火箭发动机推进剂回火热反侵    
Abstract:The premixed C2H4/N2O propulsion system has significant potential for attitude and orbit control thrusters since the propellant is not toxic and the systems are efficient and simple. However, methods are needed to prevent flashback. This study used a numerical model to analyze ignition in a thruster chamber with a single injector unit with a premixed C2H4/N2O propellant. The model included the plenum chamber, injection panel, combustion chamber and nozzle. The numerical model included a detailed chemical reaction mechanism for the ignition in the combustor and plenum chamber by coupling the reacting flow in the entire model and the heat transfer in the injection panel. The model predicts the spatio-temporal evolution of the unsteady ignition process in the thruster chamber and the steady characteristics are consistent with the results of chemical equilibrium calculations. Reducing the hole to the panel area ratio significantly increased the soak-back heat from the combustion chamber to the plenum chamber through the injection panel which eventually led to ignition of the premixed C2H4/N2O propellant in the plenum chamber. This is a new flashback mode induced by structural heat transfer through the injection panel. This process has a critical hole to panel area ratio for this propellant with a conventional chamber head. Thus, a new constraint criterion is given for the injection panel design of a premixed C2H4/N2O propulsion system.
Key wordsliquid rocket engine    propellant    flashback    soak-back heat
收稿日期: 2019-04-04      出版日期: 2020-03-03
基金资助:液体火箭发动机国防重点实验室基金资助项目(6142704040308)
通讯作者: 张会强,教授,E-mail:zhanghq@tsinghua.edu.cn     E-mail: zhanghq@tsinghua.edu.cn
引用本文:   
王伟龙, 张会强. 预混C2H4/N2O推力室喷注面板热反侵着火现象数值模拟[J]. 清华大学学报(自然科学版), 2020, 60(3): 206-211.
WANG Weilong, ZHANG Huiqiang. Numerical simulations of ignition by soak-back heat through the injection panel in a premixed C2H4/N2O thruster. Journal of Tsinghua University(Science and Technology), 2020, 60(3): 206-211.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.26.033  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I3/206
  图1 预混CH/NO单喷注单元推力室构型
  表1 固体域参数设置
  图2 (网络版彩图)预混CH/NO单喷注单元推力室点火过程
  表2 热反侵工况的燃烧室直径和喷注面板面积比
  图3 (网络版彩图)热反侵条件下推力室温度分布
  图4 喷注面板不同位置温度随燃烧室直径的变化
  图5 (网络版彩图)预混CH/NO喷注器与燃烧室内的Mach数分布[10]
[1] TAYLOR R. Safety and performance advantages of nitrous oxide fuel blends (NOFBX) propellants for manned and unmanned spaceflight applications[C]//Proceedings of the 5th IAASS Conference A Safer Space for Safer World. Noordwijk, Netherlands:European Space Agency, 2012:67-69.
[2] ZAKIROV V, SWEETING M, LAWRENCE T, et al. Nitrous oxide as a rocket propellant[J]. Acta Astronautica, 2001, 48(5-12):353-362.
[3] WHITMORE S A, CHANDLER S N. Engineering model for self-pressurizing saturated N2O propellant feed systems[J]. Journal of Propulsion and Power, 2010, 26(4):706-714.
[4] WERLING L K, HOCHHEIMER B, BARAL A L, et al. Experimental and numerical analysis of the heat flux occurring in a nitrous oxide/ethene green propellant combustion demonstrator[C]//Proceedings of the 51st AIAA/SAE/ASEE Joint Propulsion Conference. Orlando, USA:AIAA, 2015:4061-4065.
[5] KARABEYOGLU A, DYER J, STEVENS J, et al. Modeling of N2O decomposition events[C]//Proceedings of the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Hartford, CT, USA:AIAA, 2008:4933-4936.
[6] SACKHEIM R L, MASSE R K. Green propulsion advancement:Challenging the maturity of monopropellant hydrazine[J]. Journal of Propulsion and Power, 2014, 30(2):265-276.
[7] GOHARDANI A S, STANOJEV J, DEMAIRÉ A, et al. Green space propulsion:Opportunities and prospects[J]. Progress in Aerospace Sciences, 2014, 71:128-149.
[8] THOMPSON B F, STRACK D F, MUNGAS G. Determining electrical ignition characteristics of a gas propulsion system[J]. Journal of Spacecraft and Rockets, 2016:960-968.
[9] WERLING L, PERAKIS N, MULLER S, et al. Hot firing of a N2O/C2H4 premixed green propellant:First combustion tests and results[C]//Proceedings of the Space Propulsion Conference. Rome, Italy:European Space Agency, 2016.
[10] PERAKIS N, HOCHHEIMER B, WERLING L, et al. Development of an experimental demonstrator unit using nitrous oxide/ethylene premixed bipropellant for satellite applications[C]//Proceedings of the Meet the Space Conference. Krakow, Poland:Institute of Transport Research, 2014.
[11] PERAKIS N, WERLING L, CIEZKI H, et al. Numerical calculation of heat flux profiles in a N2O/C2H4 premixed green propellant combustor using an inverse heat conduction method[C]//Proceedings of the Space Propulsion Conference. Rome, Italy:European Space Agency, 2016.
[12] BANGALORE VENKATESH P, GRAZIANO T, BANE S P, et al. Deflagration-to-detonation transition in nitrous oxide-ethylene mixtures and its application to pulsed propulsion systems[C]//Proceedings of the 55th AIAA Aerospace Sciences Meeting. Grapevine, Texas, USA:AIAA, 2017:6.2017-0372.
[13] 张文普, 李宇斌. 燃气轮机燃烧回火机理与数值模拟的研究进展[J]. 燃烧科学与技术, 2016, 22(5):385-401.ZHANG W P, LI Y B. Progress in mechanisms and numerical simulation of flame flashback for gas turbine[J]. Journal of Combustion Science and Technology, 2016, 22(5):385-401. (in Chinese)
[14] LIEUWEN T, MCDONELL V, PETERSEN E, et al. Fuel flexibility influences on premixed combustor blowout, flashback, autoignition, and stability[J]. Journal of Engineering for Gas Rurbines and Power, 2008, 130(1):011506.
[15] PLEE S L, MELLOR A M. Review of flashback reported in prevaporizing/premixing combustors[J]. Combustion and Flame, 1978, 32:193-203.
[16] QIN J X, ZHANG H Q, WANG B. Numerical evaluation of acoustic characteristics and their damping of a thrust chamber using a constant-volume bomb model[J]. Chinese Journal of Aeronautics, 2018, 31(3):470-480.
[17] 覃建秀. 姿轨控发动机推力室声学特性及燃烧不稳定性数值研究[D]. 北京:清华大学, 2017.QIN J X. Numerical investigation of acoustic characteristics and combustion instability in the attitude and orbit control thruster[D]. Beijing:Tsinghua University, 2017. (in Chinese)
[18] WANG W L, ZHANG H Q. Laminar burning velocities of C2H4/N2O flames:Experimental study and its chemical kinetics mechanism[J]. Combustion and Flame, 2019, 202:362-375.
[19] ULAS A, BOYSAN E. Numerical analysis of regenerative cooling in liquid propellant rocket engines[J]. Aerospace Science and Technology, 2013, 24(1):187-197.
[1] 李丹, 吕海陆, 张扬, 张海, 周托, 吕俊复. 来流预混均匀性对湍流射流火焰回火特性的影响[J]. 清华大学学报(自然科学版), 2023, 63(4): 560-571.
[2] 杨懿, 陈文丽, 王永鹏, 唐钻坚, 赵净, 郭焕琳, 郭亚男. 基于Hilbert-Huang变换的液体火箭发动机涡轮泵故障分析[J]. 清华大学学报(自然科学版), 2022, 62(3): 540-548.
[3] 景李玥, 霍佳龙, 姚兆普, 游小清, 朱民. ADN基液体推进剂空间发动机工作过程模拟[J]. 清华大学学报(自然科学版), 2016, 56(10): 1085-1090.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn