Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2019, Vol. 59 Issue (12): 1016-1028    DOI: 10.16511/j.cnki.qhdxxb.2019.26.035
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
爬行器驱动轮与套管管壁斜压过程分析
孙可平, 杨东超, 常旭, 朱衡, 鲁沛昕, 陈恳
清华大学 机械工程系, 北京 100084
Analysis of oblique indentations caused by the tractor driving wheel and the casing pipe wall
SUN Keping, YANG Dongchao, CHANG Xu, ZHU Heng, LU Peixin, CHEN Ken
Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(2972 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 轮式水平井爬行器驱动轮与套管管壁接触过程中会在管壁上留下塑性变形压痕,该压痕形貌对爬行器的运动性能影响较大,而轮齿与管壁材料的斜压接触过程非常复杂,目前还没有相应的理论模型来分析该过程。该文详细分析了正压力和转矩同时作用下,轮齿斜压管壁时不同载荷条件下压痕形成的规律,将载荷分为6个不同的作用区域。利用滑移线理论,分析计算了每个区域轮齿不同接触状态下的压力分布,建立了轮齿载荷与压痕形貌之间的力学计算模型。在此基础上,分析和计算了各作用区域间的临界载荷,并介绍了理论模型的正向和逆向应用方法。最后对4个稳定作用区域的理论模型从压深、滑移量、压痕形貌和接触面上压力分布等4个方面进行了仿真验证,并进行了压痕验证试验。仿真和试验结果均表明:对轮齿载荷作用的分区及所建立的理论计算模型是合理的。为今后爬行器载荷控制策略的优化以及驱动轮多齿牵引力的建模与优化奠定了基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙可平
杨东超
常旭
朱衡
鲁沛昕
陈恳
关键词 爬行器压痕形貌塑性接触模型滑移线理论压力分布    
Abstract:Contact between the driving wheel of a horizontal well crawler and the casing pipe wall causes plastic deformation indentations in the pipe wall. The indentation morphology then greatly influences the crawler motion with the oblique indentation contact between the wheel teeth and the pipe wall being a very complex process. A theoretical model was developed to analyze the indentation formation for various loading conditions with positive pressure and torque on the gear tooth to the oblique indentation. The loading effects can be divided into 6 different action areas. Slip line theory was used to analyze the pressure distribution for various contact states of the gear tooth in each region in a mechanical calculation model relating the load on the gear tooth and the indentation morphology. The critical loads between the action zones are identified with forward and backward application methods of the theoretical model. Finally, theoretical models of the four stabilization zones are characterized based on their indentation depth, amount of slip, indentation morphology and pressure distribution on the contact surface, and the indentation verification test was also carried out. The simulations and tests show that the load division between the gear teeth is reasonable and the theoretical model is accurate. This lays a foundation for optimization of the crawler load control strategy and the modeling and optimization of the multi-tooth traction force on the drive wheel.
Key wordscrawler    indentation morphology    plastic contact model    slip line theory    pressure distribution
收稿日期: 2019-04-09      出版日期: 2019-12-19
基金资助:杨东超,副研究员,E-mail:ydc@tsinghua.edu.cn
引用本文:   
孙可平, 杨东超, 常旭, 朱衡, 鲁沛昕, 陈恳. 爬行器驱动轮与套管管壁斜压过程分析[J]. 清华大学学报(自然科学版), 2019, 59(12): 1016-1028.
SUN Keping, YANG Dongchao, CHANG Xu, ZHU Heng, LU Peixin, CHEN Ken. Analysis of oblique indentations caused by the tractor driving wheel and the casing pipe wall. Journal of Tsinghua University(Science and Technology), 2019, 59(12): 1016-1028.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.26.035  或          http://jst.tsinghuajournals.com/CN/Y2019/V59/I12/1016
  图1 驱动轮力学模型
  图2 FT 作用区域分界图
  图3 各区域塑性变形仿真效果图
  图4 轮齿两侧均有塑性变形时的力学分析模型
  图5 轮齿左侧有塑变时的力学分析模型
  图6 轮齿右侧有塑变时的力学分析模型
  图7 斜压时压痕形貌图
  图8 已知载荷求解压痕形貌流程图
  图9 已知压痕形貌求解载荷流程图
  图10 有限元仿真模型
  图11 γ 区域仿真验证结果
  图12 γ 区域仿真验证结果
  图13 β 区域仿真验证结果
  图14 ω 区域仿真验证结果
  图15 试验装置实物图
  图16 铝板压痕试验结果
  图17 压痕试验验证结果
[1] HEDDLESTON D C. Horizontal well production logging deployment and measurement techniques for US land shale hydrocarbon plays[R]. Oklahoma City:Society of Petroleum Engineers, 2009.
[2] HALLUNDBEK J. Well tractors for highly deviated and horizontal wells[R]. Oklahoma City:Society of Petroleum Engineers, 1994.
[3] 姜岳庆. 水平井测井及仪器输送方法研究[D]. 大庆:东北石油大学, 2013. JIANG Y Q. Study on horizontal well logging tools and transport method of tools[D]. Daqing:Northeast Petroleum University, 2013. (in Chinese)
[4] 刘清友, 李维国. Sondex水平井井下爬行器的研究与应用[J]. 石油钻采工艺, 2008, 30(5):115-117. LIU Q Y, LI W G. Research and application of Sondex downhole tractor for Horizontal wells[J]. Oil Drilling & Production Technology, 2008, 30(5):115-117. (in Chinese)
[5] 李湘涛, 秦羽乔, 陈四平, 等. 水平井测井仪器输送技术及其应用[J]. 石油机械, 2014, 42(8):98-102. LI X T, QIN Y Q, CHEN S P, et al. The horizontal well logging instrument conveying technology and its applications[J]. China Petroleum Machinery, 2014, 42(8):98-102. (in Chinese)
[6] 周劲辉, 张勇, 李翠. 水平井自扶正式电缆牵引器的设计[J]. 石油机械, 2015, 43(2):79-82. ZHOU J H, ZHANG Y, LI C. Design of self-righting cable tractor in horizontal well[J]. China Petroleum Machinery, 2015, 43(2):79-82. (in Chinese)
[7] SHEIRETOV T. Wireline tractors and mechanical services tools:comparative study of technical solutions[C]//SPE/ICOTA Coiled Tubing and Well Intervention Conference and Exhibition, Houston, USA:SPE, 2016.
[8] OMARI M A, PLESSING H. Innovation in coiled tubing tractor technology extends the accessibility of coiled tubing in horizontal wells, allowing better possibilities for well intervention[C]//SPE Middle East Oil and Gas Show and Conference. Manama, Bahrain:SPE, 2007.
[9] HENDERSON B, HOPWOOD C, HAMILTON C, et al. Cost saving benefits of using a fully bi-directional tractor system[C]//SPE/CIM International Conference on Horizontal Well Technology. Calgary, Alberta, Canada:SPE, 2000.
[10] AL-SHAWLY A S, AL-BUALI M H, AL-OMRAN M R, et al. Wireline well tractor technology experience in extended reach horizontal well[C]//Abu Dhabi International Petroleum Exhibition and Conference. Abu Dhabi, UAE:SPE, 2010.
[11] 刘振. 水平井牵引器机构分析和建模仿真技术研究[D]. 哈尔滨:哈尔滨工业大学, 2008. LIU Z. Research on mechanism analysis and modeling simulation of horizontal well tractor[D]. Harbin:Harbin Institute of Technology, 2008. (in Chinese)
[12] 曾华军. 水平井牵引器驱动系统关键技术研究[D]. 哈尔滨:哈尔滨工业大学, 2010. ZENG H J. Research on key technology of drive system of horizontal well tractor[D]. Harbin:Harbin Institute of Technology, 2010. (in Chinese)
[13] 于淼. 水平井牵引器拖动力数值分析[D]. 大庆:东北石油大学, 2011. YU M. The mule downhole mumerical analysis of drag force on[D]. Daqing:Northeast Petroleum University, 2011. (in Chinese)
[14] 侯松伟. 水平井牵引器运动学仿真与应用研究[D]. 大庆:东北石油大学, 2017. HOU S W. Research on kinematics simulation and application for horizantal well tractor[D]. Daqing:Northeast Petroleum University, 2017. (in Chinese)
[15] 张勇. 水平井电缆牵引器的机械设计研究[D]. 北京:中国石油大学(北京), 2016. ZHANG Y. Research on mechanical design of cable tractor in horizontal wells[D]. Beijing:China University of Petroleum (Beijing), 2016. (in Chinese)
[16] 刘清友, 李雨佳, 任涛, 等. 水平井爬行器驱动轮力学分析[J]. 钻采工艺, 2014, 37(1):68-71. LIU Q Y, LI Y J, REN T, et al. Mechanical analysis of driving wheels of horizontal wells tractor[J]. Drilling & Production Technology, 2014, 37(1):68-71. (in Chinese)
[17] 秦浩. 水平井爬行器驱动机构结构优化[D]. 成都:西南石油大学, 2017. QIN H, Optimization of horizontal crawler's driving mechanism[D]. Chengdu:Southwest Petroleum University, 2017. (in Chinese)
[18] HILL R. The mathematical theory of plasticity[M]. Oxford:Larendon Press, 1950.
[19] JOHNSON K L. 接触力学[M]. 徐秉业, 译. 北京:高等教育出版社, 1992. JOHNSON K L. Contact mechanics[M]. XU B Y, trans. Beijing:Higher Education Press, 1992. (in Chinese)
[20] GRUNZWEIG J, LONGMAN I M, PETCH N J. Calculations and measurements on wedge-indentation[J]. Journal of the Mechanics and Physics of Solids, 1954, 2(2):81-86.
[21] RICE J R. Plane strain slip line theory for anisotropic rigid/plastic materials[J]. Journal of the Mechanics and Physics of Solids, 1973, 21(2):63-74.
[22] BAI Y L, DODD B. A slip-line field solution for plane-strain indentation by an obtuse-angle wedge[J]. International Journal of Mechanical Sciences, 1982, 24(2):119-123.
[23] JACKSON R L, GHAEDNIA H, POPE S. A solution of rigid-perfectly plastic deep spherical indentation based on slip-line theory[J]. Tribology Letters, 2015, 58(3):47.
[24] JACKSON R L. A solution of rigid perfectly plastic cylindrical indentation in plane strain and comparison to elastic-plastic finite element predictions with hardening[J]. Journal of Applied Mechanics, 2018, 85(2):24501.
[25] 常旭, 杨东超, 孙可平, 等. 爬行器驱动轮正压过程分析[J]. 清华大学学报(自然科学版), 2019, 59(7):537-543.CHANG X, YANG D C, SUN K P, et al. Analysis of the normal indentation process caused by tractor wheels[J]. Journal of Tsinghua University (Science and Technology), 2019, 59(7):537-543. (in Chinese)
[1] 常旭, 杨东超, 孙可平, 朱衡, 杨淇耀. 爬行器驱动轮正压过程分析[J]. 清华大学学报(自然科学版), 2019, 59(7): 537-543.
[2] 邵高鹏, 张扬军. 基于流场偏差分析的燃料电池空压机优化设计[J]. 清华大学学报(自然科学版), 2019, 59(6): 490-496.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn