Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (4): 285-291    DOI: 10.16511/j.cnki.qhdxxb.2019.26.037
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
焊接电弧形貌判别模型及钨极高度的影响规律
朱志明, 程世佳, 于英飞, 符平坡
清华大学 机械工程系, 先进成形制造教育部重点实验室, 北京 100084
Automatic recognition and control of welding arc morphology as a function of the welding current and the tungsten electrode height
ZHU Zhiming, CHENG Shijia, YU Yingfei, FU Pingpo
Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(5421 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 在不同的焊接工艺参数下,电弧具有不同的几何形貌,焊接工艺参数的改变会实时地引起电弧形貌发生变化。借助高速摄像和图像处理技术,通过将弧柱边缘像素点的坐标从图像坐标系转换至以弧柱质心为原点的极坐标系,该文提出了一种基于极坐标的电弧形貌判别模型,实现了电弧形貌的有效识别,并研究了不同焊接电流下电弧形貌与钨极高度的定量关系。试验结果表明:在不同的焊接电流和钨极高度下,电弧存在扁锥形、钟罩形、长锥形和长条形4种典型形貌。电弧呈现钟罩形时,电弧的横向摆动幅度较小,有利于焊接电弧的稳定燃烧和保证焊缝成形质量。随着焊接电流的变化,不同电弧形貌对应的钨极高度范围也会发生改变。基于电弧形貌的钨极高度控制策略,为自动化焊接中实时控制钨极高度提供了新途径。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱志明
程世佳
于英飞
符平坡
关键词 电弧形貌判别模型图像处理边缘识别钨极高度    
Abstract:A welding arc has very different geometric morphologies depending on the welding process parameters that can change during the weld. High speed photography and image processing were used to develop a discriminating model to evaluate the arc morphology while welding using a polar coordinate system. The model was then used to study the quantitative relationship between the arc morphology and the tungsten electrode height for various welding currents. The experimental results show that various welding currents and tungsten electrode heights lead to four typical arc morphologies with oblate conical shapes, bell jar shapes, long conical shapes and long strip shapes. The range of tungsten electrode heights corresponding to each arc morphology were found to vary for different welding currents. With the bell jar shaped arc, the arc has smaller lateral oscillations, which gives a more stable welding arc and better welding seam quality. A control strategy was then developed based on the arc morphology to control the tungsten electrode height for real-time control of the tungsten electrode height during automatic welding.
Key wordsarc morphology    discriminating model    image processing    edge recognition    tungsten electrode height
收稿日期: 2019-04-10      出版日期: 2020-04-03
基金资助:国家自然科学基金面上项目(51775301)
引用本文:   
朱志明, 程世佳, 于英飞, 符平坡. 焊接电弧形貌判别模型及钨极高度的影响规律[J]. 清华大学学报(自然科学版), 2020, 60(4): 285-291.
ZHU Zhiming, CHENG Shijia, YU Yingfei, FU Pingpo. Automatic recognition and control of welding arc morphology as a function of the welding current and the tungsten electrode height. Journal of Tsinghua University(Science and Technology), 2020, 60(4): 285-291.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.26.037  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I4/285
  图1 T I G焊接及电弧图像拍摄系统
  图2 电弧图像处理算法
  图3 图像处理过程不同阶段的电弧图像
  图4 电弧图像边缘的极坐标表达及θ—ρ曲线
  图5 电弧的4种典型形貌及其图像边缘θ—ρ曲线
  表1 电弧形貌判别模型
  图6 电弧形貌自动判别程序
  表2 主要焊接试验参数
  图7 不同焊接电流和钨极高度下的电弧形貌
  图8 不同钨极高度下的电弧形貌自动判别结果
  图9 焊枪(钨极)高度自动控制策略
[1] 朱志明, 符平坡, 于英飞, 等. 基于图像的电弧波动行为表征及保护气体流量影响规律[J]. 焊接, 2018(10):1-4, 38. ZHU Z M, FU P P, YU Y F, et al. Characterization of arc fluctuation behavior based on image and effects of shielding gas flow rate[J]. Welding & Joining, 2018(10):1-4, 38. (in Chinese)
[2] 朱志明, 程世佳, 符平坡, 等. 焊接电弧行为特征和稳定性评价研究与进展[J]. 焊接, 2018(11):1-6, 10. ZHU Z M, CHENG S J, FU P P, et al. Research and progress on behavior characteristics and stability evaluation of welding arc[J]. Welding & Joining, 2018(11):1-6, 10. (in Chinese)
[3] 杨德宇. 液下等离子体电弧形态分析与稳定性研究[D]. 北京:北京化工大学, 2014. YANG D Y. Study on stability and speciation of submerged plasma arc[D]. Beijing:Beijing University of Chemical Technology, 2014. (in Chinese)
[4] YANG M X, ZHENG H, QI B J, et al. Effect of arc behavior on Ti-6Al-4V welds during high frequency pulsed arc welding[J]. Journal of Materials Processing Technology, 2017, 243:9-15.
[5] 冯东旭. 激光-TIG双面焊接电弧特性及组织性能研究[D]. 哈尔滨:哈尔滨工业大学, 2009. FENG D X. Study on arc characteristics and structure performance during laser-TIG double side welding[D]. Harbin:Harbin Institute of Technology, 2009. (in Chinese)
[6] SHIGETA M, IKEDA T, TANAKA M, et al. Qualitative and quantitative analyses of arc characteristics in SMAW[J]. Welding in the World, 2016, 60(2):355-361.
[7] 韩永全, 张世全, 庞世刚, 等. 铝合金变极性TIG焊接电弧行为[J]. 焊接学报, 2015, 36(9):51-54, 59. HAN Y Q, ZHANG S Q, PANG S G, et al. Arc behavior during variable polarity TIG welding of aluminum alloy[J]. Transactions of the China Welding Institution, 2015, 36(9):51-54, 59. (in Chinese)
[8] 朱加雷, 焦向东, 乔溪, 等. 激光增强GMAW焊接熔滴过渡控制试验[J]. 焊接学报, 2014, 35(8):21-24, 29. ZHU J L, JIAO X D, QIAO X, et al. Experiment on metal transfer control of laser enhanced GMAW welding[J]. Transactions of the China Welding Institution, 2014, 35(8):21-24, 29. (in Chinese)
[9] 王鹏, 李桓, 于福盛, 等. 铝合金三丝双脉冲MIG焊熔滴过渡及电信号分析[J]. 焊接学报, 2018, 39(10):98-102. WANG P, LI H, YU F S, et al. Analysis of droplet transfer and electrical signal in triple-wire double-pulse MIG welding of aluminum alloy[J]. Transactions of the China Welding Institution, 2018, 39(10):98-102. (in Chinese)
[10] 陈树君, 张所来, 黄宁, 等. 电弧熔丝脉冲GTAW熔滴过渡行为分析[J]. 焊接学报, 2017, 38(1):17-21. CHEN S J, ZHANG S L, HUANG N, et al. Droplet transfer of arcing-wire pulse GTAW[J]. Transactions of the China Welding Institution, 2017, 38(1):17-21. (in Chinese)
[11] XIAO X, HUA X M, LI F, et al. Spectroscopic measurement of temperature and gas composition in Ar-N2 shielded TIG welding[J]. Welding in the World, 2016, 60(6):1287-1296.
[12] VILARINHO L O, SCOTTI A. Proposal for a modified fowler-milne method to determine the temperature profile in TIG welding at low currents[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2004, 26(1):34-39.
[13] NOMURA K, KISHI T, SHIRAI K, et al. Temperature measurement of asymmetrical pulsed TIG arc plasma by multidirectional monochromatic imaging method[J]. Welding in the World, 2015, 59(2):283-293.
[14] 郭波, 石永华, 易耀勇. 基于电弧形态的熔滴过渡形式识别[J]. 焊接学报, 2017, 38(11):27-31. GUO B, SHI Y H, YI Y Y. Metal transfer modes identification based on arc shape[J]. Transactions of the China Welding Institution, 2017, 38(11):27-31. (in Chinese)
[15] 于英飞, 朱志明, 孙博文, 等. 焊接电弧图像的边缘检测及其批处理算法[J]. 焊接学报, 2018, 39(11):17-21. YU Y F, ZHU Z M, SUN B W, et al. Edges detection and batch algorithm for welding arc images[J]. Transactions of the China Welding Institution, 2018, 39(11):17-21. (in Chinese)
[16] 张铮, 徐超, 任淑霞, 等. 数字图像处理与机器视觉——Visual C++与Matlab实现[M]. 2版. 北京:人民邮电出版社, 2014. ZHANG Z, XU C, REN S X, et al. Digital image processing and machine vision——Implementation of Visual C++ and Matlab[M]. 2nd ed. Beijing:Posts & Telecom Press, 2014. (in Chinese)
[1] 张天一, 朱志明, 朱传辉, 孙博文. 用于弧焊过程的视觉传感图像处理及特征信息提取方法[J]. 清华大学学报(自然科学版), 2022, 62(1): 156-162.
[2] 程世佳, 朱志明, 符平坡. 基于电弧图像的脉冲TIG焊电弧形态及特征温度演变规律[J]. 清华大学学报(自然科学版), 2021, 61(9): 994-1001.
[3] 孙博文, 朱志明, 郭吉昌, 张天一. 基于组合激光结构光的视觉传感器检测算法及图像处理流程优化[J]. 清华大学学报(自然科学版), 2019, 59(6): 445-452.
[4] 张思敏, 王国磊, 于乾坤, 华宵桐, 宋立滨, 陈恳. 基于图像处理的喷涂雾锥角影响因素分析[J]. 清华大学学报(自然科学版), 2019, 59(2): 103-110.
[5] 聂鼎, 安雪晖. 基于图像处理的净浆扩展度测量工具开发[J]. 清华大学学报(自然科学版), 2016, 56(12): 1249-1254.
[6] 史琳, 许然, 许强辉, 须颖, 郑立才. 基于显微CT技术的结焦砂3维孔隙结构精细表征[J]. 清华大学学报(自然科学版), 2016, 56(10): 1079-1084.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn