Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (3): 198-205    DOI: 10.16511/j.cnki.qhdxxb.2019.26.042
  专题:航空航天与工程力学 本期目录 | 过刊浏览 | 高级检索 |
微型航空发动机推力矢量系统建模与控制
李颖杰, 吴林峰, 李春文
清华大学 自动化系, 北京 100084
Modeling and control of a micro aero-engine thrust vector system
LI Yingjie, WU Linfeng, LI Chunwen
Department of Automation, Tsinghua University, Beijing 100084, China
全文: PDF(2667 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 以微型航空发动机推力矢量系统为对象,对先进战机缩比验证机的推力矢量系统进行了建模与控制研究。对推力矢量系统建模,采用了机理模型结合试验数据的方法,引入了气动偏角与推力损失系数,对机理模型进行了修正。控制律设计采用改进后的广义最小方差方法,在保证响应速度的同时,相比传统广义最小方差方法降低了对控制参数的敏感性。最后在全工况区间对修正后的推力矢量系统进行了控制律的仿真验证,结果表明:所建立的基于改进广义最小方差控制律在经过修正的推力矢量系统模型上,具有良好的控制效果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李颖杰
吴林峰
李春文
关键词 微型航空发动机推力矢量系统气动偏角推力损失系数改进广义最小方差控制    
Abstract:A micro aero-engine model was used to study the control of the thrust vector system of a sub-scaled flight demonstrator. A mechanism model was combined with experimental data to model the thrust vector system. Aerodynamic declination and thrust loss coefficients were introduced to modify the mechanism model. The control laws were based on an improved generalized minimum variance method. Simulations show that the new method improves the model sensitivity to the control parameters compared with the traditional generalized minimum variance method. A control scheme was developed for the thrust vector system with simulations showing that the predictions are acceptable for the control of sub-scaled fighters.
Key wordsmicro aero-engine    thrust vector system    aerodynamic deflection    thrust loss coefficient    improved generalized minimum variance control
收稿日期: 2019-04-26      出版日期: 2020-03-03
基金资助:国家自然科学基金面上项目(61174068)
通讯作者: 李春文,教授,E-mail:lcw@tsinghua.edu.cn     E-mail: lcw@tsinghua.edu.cn
引用本文:   
李颖杰, 吴林峰, 李春文. 微型航空发动机推力矢量系统建模与控制[J]. 清华大学学报(自然科学版), 2020, 60(3): 198-205.
LI Yingjie, WU Linfeng, LI Chunwen. Modeling and control of a micro aero-engine thrust vector system. Journal of Tsinghua University(Science and Technology), 2020, 60(3): 198-205.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.26.042  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I3/198
  图1 双发推力矢量系统
  图2 推力矢量喷管
  图3 加装推力矢量系统
  图4 舵机角度与喷管偏角关系
  图5 机体坐标系
  图6 喷管偏角
  图7 推力矢量喷管偏航通道模型输出
  图8 推力矢量喷管俯仰通道模型输出
  图9 几何偏角与气动偏角
  图1 0 几何偏角修正前模型输出
  图1 1 几何偏角修正后模型输出
  图1 2 广义最小方差控制框图
  图1 3 改进的广义最小方差控制框图
  图1 4 改进广义最小方差控制器设计原理
  图1 5 改进的子区间上推力控制系统框图
  图1 6 改进广义最小方差控制子区间1推力响应
  图1 7 子区间1推力响应局部
  图1 8 子区间4控制产生振荡的情形
  图1 9 第二控制量对振荡的削弱作用
  图2 0 (网络版彩图)推力矢量模型修正
  图2 1 (网络版彩图)模型修正局部
  表1 20 °偏角下推力矢量模型修正
[1] 宋磊, 黄俊. 无人机缩比验证机动力选型研究[J]. 飞机设计, 2010, 30(6):38-42.SONG L, HUANG J. The study of engine system selection for sub-scaled UCAV flight test model[J]. Aircraft Design, 2010, 30(6):38-42. (in Chinese)
[2] 熊海国. 飞行模拟器发动机系统建模与面向对象的仿真研究[D]. 哈尔滨:哈尔滨工业大学, 2010. XIONG H G. Research on modelling of engine system of flight simulator and object-oriented simulation[D]. Harbin:Harbin Institute of Technology, 2010. (in Chinese)
[3] 王建锋. 航空发动机快速控制原型与实时仿真技术研究[D]. 南京:南京航空航天大学, 2012.WANG J F. Research on rapid control prototyping and real-time simulation for aero-engine[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012. (in Chinese)
[4] 夏飞, 黄金泉, 周文祥. 基于MATLAB/SIMULINK的航空发动机建模与仿真研究[J]. 航空动力学报, 2007, 22(12):2134-2138.XIA F, HUANG J Q, ZHOU W X. Modeling of and simulation research on turbofan engine based on MATLAB/SIMULINK[J]. Journal of Aerospace Power, 2007, 22(12):2134-2138. (in Chinese)
[5] CLARKE D W, GAWTHROP P J. Self-tuning controller[J] Proceedings of the Institution of Electrical Engineers, 1975, 122(9):929-934.
[6] CLARKE D W, GAWTHROP P J. Self-tuning control[J] Proceedings of the Institution of Electrical Engineers., 1979, 126(6):633-640.
[7] WITTENMARK B, ÅSTRÖM K J. Simple self-tuning controllers[M]//UNBEHAUEN H. Methods and applications in adaptive control. Berlin Heidelberg:Springer, 1980:21-30.
[8] 柴天佑, 岳恒. 自适应控制[M]. 北京:清华大学出版社, 2016.CHAI T Y, YUE H. Adaptive control[M]. Beijing:Tsinghua University Press, 2016. (in Chinese).
[9] 胡孟权. 推力矢量飞机非线性飞行控制律设计研究[D]. 西安:西北工业大学, 2002.HU M Q. Research on nonlinear flight control law design of aircraft with vectoring thrust[D]. Xi'an:Northwestern Polytechnical University, 2002. (in Chinese)
[10] 黄智勇. 超机动飞机的数学建模与运动仿真[D]. 西安:西安电子科技大学, 2007.HUANG Z Y. Mathematics modeling and motion simulation of super-maneuver aircraft[D]. Xi'an:Xidian University, 2007. (in Chinese)
[11] 李颖杰, 李环宇, 吴林峰, 等. 微型涡喷发动机推进系统的试验建模[J]. 清华大学学报(自然科学版), 2017, 57(1):107-112.LI Y J, LI H Y, WU L F, et al. Experimental modeling of micro turbine engine propulsion systems[J]. Journal of Tsinghua University (Science and Technology), 2017, 57(1):107-112(in Chinese).
[12] ALAM M A, BURHARDT K K. Further work on self-tuning regulators[C]//197918th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes. Fort Lauderdale, USA, USA:IEEE, 1979:616-620.
[13] LU J, YAHAGI T. Self-tuning control of nonminimum phase systems based on pole-zero placement using approximate inverse systems[J]. Electronics Etters, 1993, 29(1):90-91.
[14] SHAFIQ M, LU J M, YAHAGI T. On self-tuning control of nonminimum phase discrete-time stochastic systems[C]//Proceedings of the 1996 IEEE IECON. 22nd International Conference on Industrial Electronics, Control, and Instrumentation. Taipei, China:IEEE, 1996:2176-2184.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn