Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (10): 864-872    DOI: 10.16511/j.cnki.qhdxxb.2019.26.044
  水利水电工程 本期目录 | 过刊浏览 | 高级检索 |
粒子图像时间间隔对体视PIV测量误差的影响
陈启刚1, 钟强2
1. 北京交通大学 土木建筑工程学院, 北京 100044;
2. 中国农业大学 水利与土木工程学院, 北京 100083
Influence of time interval between particle images on the measurement accuracy of stereoscopic PIV
CHEN Qigang1, ZHONG Qiang2
1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China;
2. College of Water Resources&Civil Engineering, China Agricultural University, Beijing 100083, China
全文: PDF(13478 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 体视粒子图像测速(stereoscopic particle image velocimetry,SPIV)技术是根据2台相机各自连续拍摄的至少2帧粒子图像测量平面三维流场,其测量结果的精度与粒子图像时间间隔的设置有关。利用层流和明渠紊流实验数据,分析粒子图像时间间隔对SPIV测量精度的影响,结果表明:当时间间隔满足1/4准则时,层流整体测量精度随时间间隔的增加而提高,但在速度梯度较大区域,当判读窗口内粒子间位移差不满足2/3准则时,测量精度会随时间间隔的增加而降低;明渠紊流外区测量精度未发现随时间间隔发生显著变化,但近壁区过大的速度梯度使2/3准则不再被满足,测量精度随时间间隔增加而显著降低;当不满足1/4准则时,各流动的测量误差均增大。利用SPIV开展平面三维流场测量时应遵循以下实用原则:粒子图像时间间隔应满足1/4准则,在此基础上,速度梯度较小的流动尽量使用较大的时间间隔,而速度梯度较大的流动宜取满足2/3准则条件的最大时间间隔。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈启刚
钟强
关键词 体视粒子图像测速测量精度粒子图像时间间隔速度梯度    
Abstract:Stereoscopic particle image velocimetry (SPIV) measures planar three-dimensional velocity fields through the use of at least two pairs of particle images recorded separately by two different cameras. The measurement accuracy is closely related to the time interval between particle images. Two data sets for a laminar flow field and a turbulent open channel flow field were used to investigate the influence of the time interval on the SPIV measurement accuracy. The results show that when the one-quarter rule is satisfied, the overall measurement accuracy for laminar flow improves with increasing time interval. However, larger time intervals lead to lower measurement accuracies in regions with large velocity gradients when the particle displacement in the interrogation window does not satisfy the two-thirds rule. For the turbulent open channel flow, the measurement accuracy in the outer region changes little with the time interval, but the errors in the near-wall region increase greatly with increasing time interval when the two-thirds rule is not satisfied. For both flows, the measurement errors increase when the one-quarter rule is not satisfied. Thus, the one-quarter rule must always be satisfied and a relatively long time interval will improve the measurement accuracy for flows with negligible velocity gradients. Finally, the longest time interval satisfying the two-thirds rule is the optimum choice for measuring flows with large velocity gradients.
Key wordsstereoscopic particle image velocimetry    measurement accuracy    particle images    time intervals    velocity gradients
收稿日期: 2019-06-06      出版日期: 2020-07-09
引用本文:   
陈启刚, 钟强. 粒子图像时间间隔对体视PIV测量误差的影响[J]. 清华大学学报(自然科学版), 2020, 60(10): 864-872.
CHEN Qigang, ZHONG Qiang. Influence of time interval between particle images on the measurement accuracy of stereoscopic PIV. Journal of Tsinghua University(Science and Technology), 2020, 60(10): 864-872.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.26.044  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I10/864
  
  
  
  
  
  
  
  
  
  
[1] ARROYO M P, GREATED C A. Stereoscopic particle image velocimetry[J]. Measurement Science and Technology, 1991, 2(12):1181-1186.
[2] 陈启刚, 钟强. 体视粒子图像测速技术研究进展[J]. 水力发电学报, 2018, 37(8):38-54. CHEN Q G, ZHONG Q. Advances in stereoscopic particle image velocimetry[J]. Journal of Hydroelectric Engineering, 2018, 37(8):38-54. (in Chinese)
[3] LAWSON N J, WU J. Three-dimensional particle image velocimetry:Error analysis of stereoscopic techniques[J]. Measurement Science and Technology, 1997, 8(8):894-900.
[4] LAWSON N J, WU J. Three-dimensional particle image velocimetry:Experimental error analysis of a digital angular stereoscopic system[J]. Measurement Science and Technology, 1997, 8(12):1455-1464.
[5] STANISLAS M, OKAMOTO K, KÄHLER C, et al. Main results of the third international PIV challenge[J]. Experiments in Fluids, 2008, 45(1):27-71.
[6] KÄHLER C J, ASTARITA T, VLACHOS P P, et al. Main results of the 4th international PIV challenge[J]. Experiments in Fluids, 2016, 57(6):97.
[7] KEANE R D, ADRIAN R J. Optimization of particle image velocimeters. I. Double pulsed systems[J]. Measurement Science and Technology, 1990, 1(11):1202-1215.
[8] KEANE R D, ADRIAN R J. Optimization of particle image velocimeters:II. Multiple pulsed systems[J]. Measurement Science and Technology, 1991, 2(10):963-974.
[9] KEANE R D, ADRIAN R J. Theory of cross-correlation analysis of PIV images[J]. Applied Scientific Research, 1992, 49(3):191-215.
[10] WESTERWEEL J, ELSINGA G E, ADRIAN R J. Particle image velocimetry for complex and turbulent flows[J]. Annual Review of Fluid Mechanics, 2013, 45:409-436.
[11] POELMA C, WESTERWEEL J, OOMS G. Turbulence statistics from optical whole-field measurements in particle-laden turbulence[J]. Experiments in Fluids, 2006, 40(3):347-663.
[12] SCIACCHITANO A, SCARANO F, WIENEKE B. Multi-frame pyramid correlation for time-resolved PIV[J]. Experiments in Fluids, 2012, 53(4):1087-1105.
[13] 陈启刚. 基于高频PIV的明渠湍流涡结构研究[D]. 北京:清华大学, 2014. CHEN Q G. High-frequency measurement of vortices in open channel flow with particle image velocimetry[D]. Beijing:Tsinghua University, 2014. (in Chinese)
[14] SOLOFF S M, ADRIAN R J, LIU Z C. Distortion compensation for generalized stereoscopic particle image velocimetry[J]. Measurement Science and Technology, 1997, 8(12):1441-1454.
[15] WIENEKE B. Stereo-PIV using self-calibration on particle images[J]. Experiments in Fluids, 2005, 39(2):267-280.
[16] WESTERWEEL J. On velocity gradients in PIV interrogation[J]. Experiments in Fluids, 2008, 44(5):831-842.
[17] DEL ÁLAMO J C, JIMÉNEZ J, ZANDONADE P, et al. Self-similar vortex clusters in the turbulent logarithmic region[J]. Journal of Fluid Mechanics, 2006, 561:329-358.
[18] GHOSH S, FOYSI H, FRIEDRICH R. Compressible turbulent channel and pipe flow:Similarities and differences[J]. Journal of Fluid Mechanics, 2010, 648:155-181.
[19] HULTMARK M, BAILEY S C C, SMITS A J. Scaling of near-wall turbulence in pipe flow[J]. Journal of Fluid Mechanics, 2010, 649:103-113.
[20] ADRIAN R J, WESTERWEEL J. Particle image velocimetry[M]. New York:Cambridge University Press, 2011.
[1] 曹列凯, DETERTMartin, 李丹勋. 基于无人机的长河段表面流场测量系统与应用[J]. 清华大学学报(自然科学版), 2022, 62(12): 1922-1929.
[2] 冯乐乐, 吴玉新, 张海, 张扬, 岳光溪. 转轮分离器风量和转速对叶片流道涡的影响[J]. 清华大学学报(自然科学版), 2020, 60(6): 493-499.
[3] 王浩, 陈槐, 李丹勋, 王兴奎. 水平前向插入式流速仪对流速场影响的实验研究[J]. 清华大学学报(自然科学版), 2016, 56(12): 1271-1277.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn