Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (1): 57-65    DOI: 10.16511/j.cnki.qhdxxb.2019.26.049
  专题:港珠澳大桥 本期目录 | 过刊浏览 | 高级检索 |
港珠澳大桥大挑臂钢箱梁涡激振动特性及抑振措施
李明水1,2, 孙延国1,2, 廖海黎1,2, 孟凡超3, 马存明1,2
1. 西南交通大学 土木工程学院, 成都 610031;
2. 西南交通大学 风工程四川省重点实验室, 成都 610031;
3. 中交公路规划设计院有限公司, 北京 100011
Vortex-induced vibration of steel box girder with large projecting slab and its mitigation countermeasures for Hong Kong-Zhuhai-Macao Bridge
LI Mingshui1,2, SUN Yanguo1,2, LIAO Haili1,2, MENG Fanchao3, MA Cunming1,2
1. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China;
2. Wind Engineering Key Laboratory of Sichuan Province, Southwest Jiaotong University, Chengdu 610031, China;
3. CCCC Highway Consultants Co., Ltd., Beijing 100011, China
全文: PDF(6970 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 港珠澳大桥采用的大挑臂钢箱梁外形较钝,在常遇风速下易发生涡激振动。该文通过一系列节段模型和全桥气动弹性模型风洞试验,详细研究了各种气动措施和阻尼措施对此类断面涡激振动性能的影响。结果表明:大挑臂钢箱梁截面存在2个竖向涡振区和1个扭转涡振区;依据涡振振幅和发振风速区间,通航孔斜拉桥需关注第2个竖向涡振区,非通航孔连续梁桥需关注第1个竖向涡振区;在栏杆上安装弧形扰流板的气动措施可有效改善其涡激振动性能;增加结构阻尼可显著降低其涡振振幅,阻尼比达到1.0%时,涡激振动基本消失,该阻尼限值可作为港珠澳大桥的调谐质量阻尼器的依据;最后,利用三维非线性涡振分析方法对节段模型和全桥气弹模型风洞试验结果的一致性进行了讨论。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李明水
孙延国
廖海黎
孟凡超
马存明
关键词 港珠澳大桥涡激振动大挑臂钢箱梁抑振措施    
Abstract:Steel box girder with large projecting slab applied in Hong Kong-Zhuhai-Macao Bridge (HZMB), is very prone to vortex-induced vibration (VIV) due to its bluff configuration. A series of section models and full aeroelastic bridge models wind tunnel tests were conducted to investigate the effects of aerodynamic measures and additional damping measures for mitigating the VIV of HZMB. The results show that two vertical VIV regions and one torsional VIV region were observed during the wind tunnel tests. According to the VIV amplitude and wind speed range of each case, the particular attention should be paid on the second vertical VIV region for the cable-stayed bridges of navigable span and the first vertical VIV region for the continuous beam bridges of non-navigable span. The VIV performance of the bridges was efficiently improved by installing arc-shaped guide vane on guardrails. In addition, the VIV amplitude were reduced significantly by increasing additional damping, and the VIV phenomenon disappeared when the damping ratio increases to 1.0%, which can be used for the design of the tuned mass damper (TMD) for HZMB. Finally, the consistency of wind tunnel test results between section model and full bridge aeroelastic model was discussed by three-dimensional nonlinear VIV analysis method.
Key wordsHong Kong-Zhuhai-Macao Bridge    vortex-induced vibration    steel box girder bridge with large projecting slab    mitigation measures
收稿日期: 2019-04-14      出版日期: 2020-01-03
基金资助:孙延国,讲师,E-mail:ygsun@swjtu.edu.cn
引用本文:   
李明水, 孙延国, 廖海黎, 孟凡超, 马存明. 港珠澳大桥大挑臂钢箱梁涡激振动特性及抑振措施[J]. 清华大学学报(自然科学版), 2020, 60(1): 57-65.
LI Mingshui, SUN Yanguo, LIAO Haili, MENG Fanchao, MA Cunming. Vortex-induced vibration of steel box girder with large projecting slab and its mitigation countermeasures for Hong Kong-Zhuhai-Macao Bridge. Journal of Tsinghua University(Science and Technology), 2020, 60(1): 57-65.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.26.049  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I1/57
  表1 涡振试验节段模型设计参数
  表2 检查车轨道相关抑振措施
  表3 抑流板抑振措施
  表4 风嘴抑振措施
  表5 扰流板抑振措施
  表6 四座桥梁试验参数及结果统计表
  表7 节段模型、 全桥气弹模型风洞试验及三维非线性涡振分析结果( +3°攻角)
  图1 青州航道桥桥跨布置图( 单位: m)
  图2 青州航道桥主梁标准断面图( 单位: m)
  图3 风洞中的节段模型整体与挑臂局部
  图4 涡振响应
  图5 栏杆上安装导流板优化方案 ( 单位: cm)
  图6 优化方案主梁竖向位移随风速变化曲线
  图7 江海直达船航道桥桥跨布置及横断面图 ( 单位: m)
  图8 非通航孔6×110 m 桥跨布置及横断面图( 单位: m)
  图9 非通航孔(110+150+110)m 桥跨 布置及横断面图 ( 单位: m)
  图10 ( 网络版彩图) 阻尼比对涡振振幅的影响
[1] BATTISTA R C, PFEIL M S, ROITMAN N, et al. Global analysis of the structural behaviour of the central spans of Rio-Niterói Bridge[R]. Rio de Janeiro:Ponte Sa Contract Report. Ponte Sa, 1993.
[2] FUJINO Y. Wind-induced vibration and control of Tran-Tokyo Bay crossing bridge[J]. Journal of Structural Engineering, 2002(8):1012-1025.
[3] 廖海黎. 崇启大桥主桥施工阶段涡激共振试验研究报告[R]. 成都:西南交通大学风工程试验研究中心, 2010. LIAO H L. Experimental research report of vortex-induced vibration for Chongqi Bridge in erection stage[R]. Chengdu:Research Center for Wind Engineering of Southwest Jiaotong University, 2010. (in Chinese)
[4] 秦浩, 廖海黎, 李明水. 变截面连续钢箱梁桥典型施工阶段涡激振动[J]. 西南交通大学学报. 2014, 45(9):760-765, 786. QIN H, LIAO H L, LI M S. Vortex-induced vibration of continuous steel box-girder bridge with variable cross-sections at typical erection stages[J]. Journal of Southwest Jiaotong University, 2014, 45(9):760-765, 786. (in Chinese)
[5] 陈政清.桥梁风工程[M]. 北京:人民交通出版社, 2005. CHEN Z Q. Bridge wind engineering[M]. Beijing:China Communications Press, 2005. (in Chinese)
[6] 刘建新.桥梁对风反应中涡激振动及制振[J]. 中国公路学报, 1995, 8(2):74-79. LIU J X. Vortex-induced vibration and its control in responses of bridge to wind[J]. China Journal of Highway and Transport, 1995, 8(2):74-79. (in Chinese)
[7] 张文明, 葛耀君, 杨詠昕, 等. 带挑臂箱梁涡振气动控制试验[J]. 哈尔滨工业大学学报, 2010, 42(12):1948-1952. ZHANG W M, GE Y J, YANG Y X, et al. Experimental study on aerodynamic control of the vortex induced vibrations of a box girder with projecting slab[J]. Journal of Harbin Institute of Technology, 2010, 42(12):1948-1952. (in Chinese)
[8] 李春光, 陈政清, 韩艳. 带悬臂流线型箱梁大比例节段模型涡振试验研究[J]. 桥梁建设, 2014, 44(6):12-18. LI C G, CHEN Z Q, HAN Y. Experimental study of large scale sectional model for vortex-induced vibration of Streamlined box girder with cantilever walk slabs[J]. Bridge Construction, 2014, 44(6):12-18. (in Chinese)
[9] 李春光, 陈政清, 韩阳. 带悬挑人行道板流线型箱梁涡振性能研究[J]. 振动与冲击, 2014, 33(24):19-25. LI C G, CHEN Z Q, HAN Y. Vortex induced vibration performance of a streamlined box girder with a cantilevered walking slab[J]. Journal of Vibration and Shock, 2014, 33(24):19-25. (in Chinese)
[10] 熊龙, 孙延国, 廖海黎. 钢箱梁在高低雷诺数下的涡振特性研究[J]. 桥梁建设, 2016, 46(5):65-70. XIONG L, SUN Y G, LIAO H L. Study of vortex-induced vibration characteristics of steel box girder at high and low Reynolds numbers[J]. Bridge Construction, 2016, 46(5):65-70. (in Chinese)
[11] 熊龙, 廖海黎, 孙延国. 带挑臂箱梁竖向涡振特性风洞试验研究[J]. 武汉理工大学学报, 2015, 37(11):72-77. XIONG L, LIAO H L, SUN Y G. Wind-tunnel test study on the characteristics of vertical vortex-induced vibration of box girder with projecting slab[J]. Journal of Wuhan University of Technology, 2015, 37(11):72-77. (in Chinese)
[12] Honshu-Shikoku Bridge Authority. Wind resistant design standard for Honshu-Shikoku bridges[S]. Kobe:HSBA, 2001. (in Japanese)
[13] BATTISTA R C, PFEIL M S. Reduction of vortex-induced oscillations of Rio-Niteroi Bridge by dynamic control devices[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 84(3):273-288.
[14] 中华人民共和国交通部. 公路桥梁抗风设计规范:JTG/T D60-01-2004[S]. 北京:人民交通出版社, 2004. Ministry of Communications of the People's Republic of China. Wind-resistent design specification for highway bridges:JTG/T D60-01-2004[S]. Beijing:China Communications Press, 2004. (in Chinese)
[15] Great Britain Highway Agency. BD 49/01 design manual for roads and bridges (Part 3) design rules for aerodynamic effects on bridges[S]. Norwich:The Stationery Office, 1993.
[16] 朱乐东. 桥梁涡激共振试验节段模型质量系统模拟与振幅修正方法[J]. 工程力学, 2005, 10(5):204-208. ZHU L D. Mass simulation and amplitude conversion of bridge sectional model test for vortex-excited resonance[J]. Engineering Mechanics, 2005, 10(5):204-208. (in Chinese)
[17] 张志田, 陈政清. 桥梁节段与实桥涡激共振幅值的换算关系[J]. 土木工程学报, 2011, 44(7):77-82. ZHANG Z T, CHEN Z Q. Similarity of amplitude of sectional model to that of full bridge in the case of vortex induced resonance[J]. China Civil Engineering Journal, 2011, 44(7):77-82. (in Chinese)
[18] EHSAN F, SCANLAN R H. Vortex-induced vibration of flexible bridges[J]. Journal of Engineering Mechanics. 1990, 116(6):1392-1411.
[19] SUN Y G, LI M S, LIAO H L. Nonlinear approach of vortex-induced vibration for line-like structures[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 124:1-6.
[20] 王孝楠. 典型钝体断面涡激力特性及其跨向相关性研究[D]. 成都:西南交通大学, 2017. WANG X N. Study on the Characteristic and spanwise correlation of vortex-induced force on bluff body[D]. Chengdu:Southwest Jiaotong University, 2017. (in Chinese)
[1] 廖海黎, 马存明, 李明水, 孟凡超. 港珠澳大桥的结构抗风性能[J]. 清华大学学报(自然科学版), 2020, 60(1): 41-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn