Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (1): 21-27    DOI: 10.16511/j.cnki.qhdxxb.2020.21.007
  专题:汽车部件 本期目录 | 过刊浏览 | 高级检索 |
鼓式制动器疲劳寿命预测
王晓颖,范子杰,边疆,桂良进*()
清华大学 车辆与运载学院, 汽车安全与节能国家重点实验室, 北京 100084
Drum brake fatigue life predictions
Xiaoying WANG,Zijie FAN,Jiang BIAN,Liangjin GUI*()
State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
全文: PDF(9052 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 

鼓式制动器是重型商用车的关键安全部件,研究其疲劳寿命预测方法具有重要的工程意义。制动鼓的开裂是鼓式制动器失效的主要形式。该文首先建立并验证了鼓式制动器温度-应力顺序耦合的有限元模型,并获取了加速疲劳工况下制动鼓的动态应力曲线;然后拟合了高温状态下内表面材料的应力应变关系,代入动应力曲线作为疲劳载荷,使用Manson-Coffin-Basquin模型计算得到内表面各点的失效寿命;最后借助加速疲劳试验结果验证了鼓式制动器的疲劳寿命预测方法。该方法分析了制动器在实际工作过程中的热机载荷波动,考虑了制动鼓材料高温状态性能下降的影响,能够满足工程中制动器失效行为预测的使用需要,可为后续的优化设计奠定基础。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王晓颖
范子杰
边疆
桂良进
关键词 鼓式制动器疲劳寿命预测应变寿命模型    
Abstract

Drum brakes are a key safety component in heavy commercial vehicles, so they need accurate failure characteristic models. Drum cracking is the most common failure mechanism for drum brakes. This paper presents a coupled temperature-stress model for drum brakes that can obtain the dynamic stress curves for accelerated fatigue working conditions. Then, this paper fitted the relationship between the stress and strain of the material on the inner drum surface at high temperatures and used the former dynamic stress curves as the fatigue load. The Manson-Coffin-Basquin model was then used to predict the failure life of each point on the inner surface. This drum brake lifetime prediction method was then verified against accelerated fatigue test results. This model can include the effects of the load fluctuations on the drum during use, as well as the effect of the material performance degradation at high temperatures. This model is useful for optimizing engineering designs of drum brakes.

Key wordsdrum brake    fatigue life prediction    strain-life model
收稿日期: 2020-01-16      出版日期: 2020-11-26
通讯作者: 桂良进     E-mail: gui@tsinghua.edu.cn
引用本文:   
王晓颖,范子杰,边疆,桂良进. 鼓式制动器疲劳寿命预测[J]. 清华大学学报(自然科学版), 2021, 61(1): 21-27.
Xiaoying WANG,Zijie FAN,Jiang BIAN,Liangjin GUI. Drum brake fatigue life predictions. Journal of Tsinghua University(Science and Technology), 2021, 61(1): 21-27.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.21.007  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I1/21
  鼓式制动器疲劳寿命预测方法技术路线
  顺序耦合方法进行热机耦合计算流程图
  鼓式制动器热机耦合有限元计算模型
10.16511/j.cnki.qhdxxb.2020.21.007.T001

数值计算模型中各部件的材料参数

部件 温度/℃ 比热容/(J·g-1·℃-1) 热传导系数/(W·m-1·℃-1) 热膨胀系数/(10-6·℃-1) Young's模量/GPa 密度/(kg·m-3)
制动鼓 20 0.503 42.38 4.386 100.0 7 220
100 0.530 43.06 11.653
200 0.563 44.23 12.836 99.69
300 0.611 43.55 13.580
400 0.641 40.67 13.578 96.27
500 0.701 39.72 13.804
制动蹄 0.452 48 11 205 7 800
摩擦片 1.178 1.98 7.55 7.65 2 150
  
数值计算模型中各部件的材料参数
  鼓式制动器热机耦合模型台架验证试验
  仿真计算与试验获取的制动鼓测试点的周向应变曲线
  仿真计算与试验获取的摩擦片上测试点的温度曲线
  3种制动方式下制动鼓开口处节点时间-周向应力曲线及其组合
  三种制动方式下制动鼓开口处温度曲线和制动鼓温度最高值出现时刻温度分布情况
  灰铸铁材料拟合得到不同温度下应力应变关系(R-O模型描述)
10.16511/j.cnki.qhdxxb.2020.21.007.T002

灰铸铁材料试验得到的Manson-Coffin-Basquin模型参数

温度 σf εf b c
常温 659.2 0.053 3 -0.149 5 -0.642 8
500℃ 274.7 0.031 8 -0.102 2 -0.525 8
  
灰铸铁材料试验得到的Manson-Coffin-Basquin模型参数
10.16511/j.cnki.qhdxxb.2020.21.007.T003

修正得到的制动鼓材料Manson-Coffin-Basquin模型参数

温度 σf εf b c
常温 659.2 0.053 3 -0.300 8 -0.642 8
500℃ 274.7 0.031 8 -0.253 6 -0.525 8
  
修正得到的制动鼓材料Manson-Coffin-Basquin模型参数
  制动鼓内表面各点疲劳寿命预测结果
  加速疲劳试验中制动鼓内表面裂纹发展过程
1 LIMPERT R . Brake design and safety[M]. 3rd ed. Warrendale: SAE, 2011.
doi: 10.4271/R-398
2 GUI L , WANG X , FAN Z , et al. A simulation method of thermo-mechanical and tribological coupled analysis in dry sliding systems[J]. Tribology International, 2016. 103, 121- 131.
doi: 10.1016/j.triboint.2016.06.021
3 FANCHER P . Discussion:"An analysis of speed, temperature, and performance characteristics of automotive drum brakes" (Day, A. J., 1988, ASME J. Tribol., 110, pp. 298-303)[J]. Journal of Tribology, 1988. 110 (2): 304- 304.
4 GAO C H , HUANG J M , LIN X Z , et al. Stress analysis of thermal fatigue fracture of brake disks based on thermomechanical coupling[J]. Journal of Tribology, 2006. 129 (3): 536- 543.
6 李卫.重型卡车持续制动制动器热机耦合分析及疲劳损伤预测[D].秦皇岛:燕山大学, 2013.
6 LI W. Thermal-mechanical coupling analysis and fatigue damage prediction on continuous braking of heavy truck brake[D]. Qinhuangdao: Yanshan University, 2013. (in Chinese)
7 KIM D J , LEE Y M , PARK J S , et al. Thermal stress analysis for a disk brake of railway vehicles with consideration of the pressure distribution on a frictional surface[J]. Materials Science and Engineering:A, Structural Materials:Properties, Microstructure and Processing, 2008. 483 (483-484): 456- 459.
8 MACKIN T J , NOE S C , BALL K J , et al. Thermal cracking in disc brakes[J]. Engineering Failure Analysis, 2002. 9 (1): 63- 76.
10 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.金属材料轴向等幅低循环疲劳试验方法: GB/T 15248-2008[S].北京:中国标准出版社, 2008.
10 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. The test method for axial loading constant-amplitude low-cycle fatigue of metallic materials: GB/T 15248-2008[S]. Beijing: Standards Press of China, 2008. (in Chinese)
11 PEVEC M , ODER G , POTR A?G I , et al. Elevated temperature low cycle fatigue of grey cast iron used for automotive brake discs[J]. Engineering Failure Analysis, 2014. 42, 221- 230.
doi: 10.1016/j.engfailanal.2014.03.021
12 ASTM Committee. Standard practice for strain controlled thermomechanical fatigue testing: E2368-10(2017)[S]. West Conshohocken: ASTM International, 2017.
13 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.金属材料热机械疲劳试验方法: GJB 6213-2008[S].北京:中国标准出版社, 2008.
13 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Testing method for thermal-mechanical fatigue of metallic materials: GJB 6213-2008[S]. Beijing: Standards Press of China, 2008. (in Chinese)
14 BASQUIN O H . The exponential law of endurance testing[J]. Proceedings of the American Society for Testing and Material, 1910. 10, 625- 630.
15 MANSON S S . Fatigue:A complex subject some simple approximation[J]. Experimental Mechanics, 1965. 5 (4): 193- 226.
doi: 10.1007/BF02321056
16 MITCHELL M R . Fundamentals of modern fatigue analysis for design[J]. ASM International, Fatigue and Fracture, 1996. 19, 227- 249.
17 STEPHENS R I , FATEMI A , STEPHENS R R , et al. Metal fatigue in engineering[M]. New York: John Wiley & Sons, 2000.
19 GAENSER H P . Some notes on gradient, volumetric and weakest link concepts in fatigue[J]. Computational Materials Science, 2008. 44 (2): 230- 239.
doi: 10.1016/j.commatsci.2008.03.021
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn