Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (6): 653-658    DOI: 10.16511/j.cnki.qhdxxb.2020.21.012
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
环形二极管电容检测电路特性
周晓桐, 张嵘
清华大学 精密仪器系, 北京 100084
Ring-diode capacitance detection circuit characteristics
ZHOU Xiaotong, ZHANG Rong
Department of Precision Instrument, Tsinghua University, Beijing 100084, China
全文: PDF(1348 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 在陀螺仪中,微电容检测系统的精度直接决定了转子位移测量精度,进而影响了陀螺的精度。为适应高精度转子陀螺的特殊结构,该文研制了一种基于环形二极管解调的微电容检测系统。研究了该系统输出增益变化规律,提出了基于漏电最小化原则的增益解算算法;研究了输出噪声的特性,并设计了相应的噪声解算算法;在此基础上,提出一种基于环形二极管解调的新型微电容检测方法,抑制噪声以提高电容检测分辨率。实验结果表明:优化电路后的电容分辨率达到20.0 aF,单位带宽下的分辨率达到0.258 aF·Hz-1/2,满足电容测量的精度需求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周晓桐
张嵘
关键词 微电容检测环形二极管“漏电最小化”原则电容检测分辨率    
Abstract:The accuracy of micro-capacitance detection systems in gyroscopes directly determines the rotor displacement measurement accuracy, which in turn determines the overall accuracy of the gyroscope. A micro-capacitance detector was developed in this study based on ring-diode demodulation for the special structure of a spinning-rotor gyro. The system output gain variations were studied to develop a gain algorithm based on the leakage minimization principle with a noise reduction algorithm to reduce the output noise. This micro-capacitance detection method based on ring diodes reduces the noise which improves the capacitance detection resolution. Tests show that the optimized circuit gives a capacitance resolution of better than 20.0 aF and a resolution at the unit bandwidth of better than 0.258 aF·Hz-1/2 which is excellent capacitance measurement accuracy.
Key wordsmicro-capacitance detection    ring diodes    leakage minimization principle    capacitance detection resolution
收稿日期: 2020-05-25      出版日期: 2021-04-28
通讯作者: 张嵘,教授,E-mail:rongzh@tsinghua.edu.cn      E-mail: rongzh@tsinghua.edu.cn
作者简介: 周晓桐(1990-),男,博士研究生。
引用本文:   
周晓桐, 张嵘. 环形二极管电容检测电路特性[J]. 清华大学学报(自然科学版), 2021, 61(6): 653-658.
ZHOU Xiaotong, ZHANG Rong. Ring-diode capacitance detection circuit characteristics. Journal of Tsinghua University(Science and Technology), 2021, 61(6): 653-658.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.21.012  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I6/653
  
  
  
  
  
  
  
[1] 高钟毓. 静电陀螺仪技术[M]. 北京:清华大学出版社, 2004.GAO Z Y. The technology of ESG[M]. Beijing:Tsinghua University Press, 2004. (in Chinese)
[2] 杜念通. 适用于MEMS陀螺的基于TDC的振荡式电容检测方法研究[D]. 北京:清华大学, 2015.DU N T. Research on the oscillation capacitance detection method based on TDC for MEMS gyroscope[D]. Beijing:Tsinghua University, 2015. (in Chinese)
[3] 卢月娟, 徐大诚, 郭述文. 低噪声硅微陀螺敏感电容电荷读出电路设计[J]. 传感器与微系统, 2017, 36(1):105-107, 114. LU Y J, XU D C, GUO S W. Design of charge readout circuit of low noise silicon micro-gyroscope sensitive capacitor[J]. Transducer and Microsystem Technologies), 2017, 36(1):105-107, 114. (in Chinese)
[4] 张嵘. 线振动硅微机械陀螺研究[D]. 北京:清华大学, 2006.ZHANG R. Study on silicon micromachined linear vibratory gyroscope[D]. Beijing:Tsinghua University, 2006. (in Chinese)
[5] JIANG H, AMANI S, VOGEL J G, et al. A 117 dB in-band CMRR 98.5 dB SNR capacitance-to-digital converter for sub-nm displacement sensing with an electrically floating target[C]//2018 IEEE Symposium on VLSI Circuits. Honolulu, USA:IEEE, 2018:2158-5601.
[6] FAN W, CHEN M, JIN H X, et al. Multi-layer concentric ring differential capacitance displacement sensor[J]. Measurement, 2019, 136:615-621.
[7] 陈炳贤, 宋来亮, 张春熹. 基于电容桥的差动电容检测方法[J]. 传感器与微系统, 2019, 38(12):116-119. CHEN B X, SONG L L, ZHANG C X. Differential capacitance detection method based on capacitance bridge[J]. Transducer and Microsystem Technologies, 2019, 38(12):116-119. (in Chinese)
[8] BALACHANDRAN G K, PETKOV V P, MAYER T, et al. A 3-axis gyroscope for electronic stability control with continuous self-test[J]. IEEE Journal of Solid-State Circuits, 2016, 51(1):177-186.
[9] XIA D, YU C, KONG L. The development of micromachined gyroscope structure and circuitry technology[J].Sensors, 2014, 14(1):1394-1473.
[10] 李鹏程, 王利恒. 差分电容测量在微位移检测中的应用[J]. 自动化与仪表, 2019, 34(10):53-56, 61. LI P C, WANG L H. Application of differential capacitance measurement in micro displacement detection[J]. Automation and Instrumentation, 2019, 34(10):53-56, 61. (in Chinese)
[11] 于长兴. 高精度微电容检测系统的设计[J]. 仪表技术与传感器, 2018(6):76-78, 82. YU C X. Design of high precision micro-apacitance detection system[J]. Instrument Technique and Sensor, 2018(6):76-78, 82. (in Chinese)
[12] 李芳, 任慧麟, 韩同辉. 航空发动机叶片间隙测量方法[J]. 测控技术, 2018, 37(增刊1):430-432. LI F, REN H L, HAN T H. Measurement method of blade clearance of aero-engine[J]. Measurement & Control Technology, 2018, 37(S1):430-432. (in Chinese)
[13] 李晶, 于殿泓. 非平行板电容传感器的微小电容检测电路设计[J]. 仪表技术与传感器, 2020(1):100-103. LI J, YU D H. Design of small capacitance detection circuit for non-parallel plate capacitive sensor[J]. Instrument Technique and Sensor, 2020(1):100-103. (in Chinese)
[14] 张学锋, 吴东伟. 一种基于电压反馈运算放大器的微小电容检测电路[J]. 仪表技术与传感器, 2019(10):112-116. ZHANG X F, WU D W. Micro eapacitance detection circuit based on voltage-feedback operational amplifier[J]. Instrument Technique and Sensor, 2019(10):112-116. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn