Abstract:The accuracy of micro-capacitance detection systems in gyroscopes directly determines the rotor displacement measurement accuracy, which in turn determines the overall accuracy of the gyroscope. A micro-capacitance detector was developed in this study based on ring-diode demodulation for the special structure of a spinning-rotor gyro. The system output gain variations were studied to develop a gain algorithm based on the leakage minimization principle with a noise reduction algorithm to reduce the output noise. This micro-capacitance detection method based on ring diodes reduces the noise which improves the capacitance detection resolution. Tests show that the optimized circuit gives a capacitance resolution of better than 20.0 aF and a resolution at the unit bandwidth of better than 0.258 aF·Hz-1/2 which is excellent capacitance measurement accuracy.
[1] 高钟毓. 静电陀螺仪技术[M]. 北京:清华大学出版社, 2004.GAO Z Y. The technology of ESG[M]. Beijing:Tsinghua University Press, 2004. (in Chinese) [2] 杜念通. 适用于MEMS陀螺的基于TDC的振荡式电容检测方法研究[D]. 北京:清华大学, 2015.DU N T. Research on the oscillation capacitance detection method based on TDC for MEMS gyroscope[D]. Beijing:Tsinghua University, 2015. (in Chinese) [3] 卢月娟, 徐大诚, 郭述文. 低噪声硅微陀螺敏感电容电荷读出电路设计[J]. 传感器与微系统, 2017, 36(1):105-107, 114. LU Y J, XU D C, GUO S W. Design of charge readout circuit of low noise silicon micro-gyroscope sensitive capacitor[J]. Transducer and Microsystem Technologies), 2017, 36(1):105-107, 114. (in Chinese) [4] 张嵘. 线振动硅微机械陀螺研究[D]. 北京:清华大学, 2006.ZHANG R. Study on silicon micromachined linear vibratory gyroscope[D]. Beijing:Tsinghua University, 2006. (in Chinese) [5] JIANG H, AMANI S, VOGEL J G, et al. A 117 dB in-band CMRR 98.5 dB SNR capacitance-to-digital converter for sub-nm displacement sensing with an electrically floating target[C]//2018 IEEE Symposium on VLSI Circuits. Honolulu, USA:IEEE, 2018:2158-5601. [6] FAN W, CHEN M, JIN H X, et al. Multi-layer concentric ring differential capacitance displacement sensor[J]. Measurement, 2019, 136:615-621. [7] 陈炳贤, 宋来亮, 张春熹. 基于电容桥的差动电容检测方法[J]. 传感器与微系统, 2019, 38(12):116-119. CHEN B X, SONG L L, ZHANG C X. Differential capacitance detection method based on capacitance bridge[J]. Transducer and Microsystem Technologies, 2019, 38(12):116-119. (in Chinese) [8] BALACHANDRAN G K, PETKOV V P, MAYER T, et al. A 3-axis gyroscope for electronic stability control with continuous self-test[J]. IEEE Journal of Solid-State Circuits, 2016, 51(1):177-186. [9] XIA D, YU C, KONG L. The development of micromachined gyroscope structure and circuitry technology[J].Sensors, 2014, 14(1):1394-1473. [10] 李鹏程, 王利恒. 差分电容测量在微位移检测中的应用[J]. 自动化与仪表, 2019, 34(10):53-56, 61. LI P C, WANG L H. Application of differential capacitance measurement in micro displacement detection[J]. Automation and Instrumentation, 2019, 34(10):53-56, 61. (in Chinese) [11] 于长兴. 高精度微电容检测系统的设计[J]. 仪表技术与传感器, 2018(6):76-78, 82. YU C X. Design of high precision micro-apacitance detection system[J]. Instrument Technique and Sensor, 2018(6):76-78, 82. (in Chinese) [12] 李芳, 任慧麟, 韩同辉. 航空发动机叶片间隙测量方法[J]. 测控技术, 2018, 37(增刊1):430-432. LI F, REN H L, HAN T H. Measurement method of blade clearance of aero-engine[J]. Measurement & Control Technology, 2018, 37(S1):430-432. (in Chinese) [13] 李晶, 于殿泓. 非平行板电容传感器的微小电容检测电路设计[J]. 仪表技术与传感器, 2020(1):100-103. LI J, YU D H. Design of small capacitance detection circuit for non-parallel plate capacitive sensor[J]. Instrument Technique and Sensor, 2020(1):100-103. (in Chinese) [14] 张学锋, 吴东伟. 一种基于电压反馈运算放大器的微小电容检测电路[J]. 仪表技术与传感器, 2019(10):112-116. ZHANG X F, WU D W. Micro eapacitance detection circuit based on voltage-feedback operational amplifier[J]. Instrument Technique and Sensor, 2019(10):112-116. (in Chinese)