Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (12): 1039-1046    DOI: 10.16511/j.cnki.qhdxxb.2020.21.013
  物理与物理工程 本期目录 | 过刊浏览 | 高级检索 |
引入熔融糊状区的PMMA逆流火蔓延数值模拟
罗圣峰1,谢启源2,*(),张辉1,*(),王光健3
1. 清华大学 工程物理系, 北京 100084
2. 中国科学技术大学 火灾科学国家重点实验室, 合肥 230026
3. 清华大学 航天航空学院, 北京 100084
Numerical simulation of opposed-flow flame spread of PMMA with melting mushy zone
Shengfeng LUO1,Qiyuan XIE2,*(),Hui ZHANG1,*(),Guangjian WANG3
1. Department of Engineering Physics, Tsinghua University, Beijing 100084, China
2. State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China
3. School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(5135 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

该文通过数值模拟研究了聚甲基丙烯酸甲酯(PMMA)板材逆流火蔓延过程,将PMMA火蔓延过程中的糊状区熔融相变传热过程引入到材料的能量方程,并建立气相燃烧反应的组分方程和传热微分方程。通过在材料上边界局部位置施加固定热流以实现点火过程,研究相变材料由点火、非稳定火蔓延到稳定火蔓延过程中的典型特性。基于凝聚相温度场,获得了糊状区和熔融相界面的形态。结果表明:火焰前缘附近的糊状区较薄,火焰前锋下游糊状区呈缓慢增厚趋势,火焰前锋附近的液相熔融界面较浅;随着与火焰前锋距离的增大,熔融深度逐渐加深。基于模拟结果和尺度分析,表明熔融界面形态近似呈二次函数发展。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗圣峰
谢启源
张辉
王光健
关键词 聚甲基丙烯酸甲酯(PMMA)火蔓延数值模拟熔融相变    
Abstract

The opposed-flow flame spreading along a polymethyl methacrylate (PMMA) sheet was investigated numerically. The melting process included a mushy transition region in the energy equation during the flame spreading. The fuel was ignited by applying a fixed heat flow at one position on the upper boundary of the material. The results show the typical procedures of ignition followed by unstable to stable flame spreading. The morphology of the mushy zone and the molten phase thickness were obtained based on the temperature field. The results show that the mushy zone is thin near the flame front and gradually thickens downstream of the flame front. Additionally, the melt region is shallow near the flame front and gradually deepens with increasing the distance from the flame front. The numerical results and a scale analysis show that the melt interface location can be approximated by a quadratic function.

Key wordspolymethyl methacrylate (PMMA)    flame spread    numerical simulation    melt transition
收稿日期: 2020-04-27      出版日期: 2020-10-14
通讯作者: 谢启源,张辉     E-mail: xqy@ustc.edu.cn;zhhui@tsinghua.edu.cn
引用本文:   
罗圣峰,谢启源,张辉,王光健. 引入熔融糊状区的PMMA逆流火蔓延数值模拟[J]. 清华大学学报(自然科学版), 2020, 60(12): 1039-1046.
Shengfeng LUO,Qiyuan XIE,Hui ZHANG,Guangjian WANG. Numerical simulation of opposed-flow flame spread of PMMA with melting mushy zone. Journal of Tsinghua University(Science and Technology), 2020, 60(12): 1039-1046.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.21.013  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I12/1039
  热塑性材料受热熔融相变过程和火蔓延过程示意图
10.16511/j.cnki.qhdxxb.2020.21.013.T001

模型主要物性参数

参数 数值
固相导热系数ks/(W·m-1·K-1) 0.2
固相密度ρs/(kg·m-3) 1 190
液相导热系数kl/(W·m-1·K-1) 0.36
固相线温度Ts/K 440
热解活化能Ec/(J·mol-1) 129 872.9
气体导热系数kg/(W·m-1·K-1) 0.041 1
热解反应热qc/(J·kg-1) 9.41×105
燃烧热qg/(J·kg-1) -2.59×107
初始氧质量分数Yo, ∞ 0.3
可燃气反应当量比uf 1
PMMA比热容Cps/(J·kg-1·K-1) 1 460
液相密度ρl/(kg·m-3) 1 500
液相线温度Tl/K 500
热解指前因子Ac/(J·mol-1) 2.82×109
渗透系数Ke 0.95
气体比热容Cpg/(J·kg-1·K-1) 1 007
初始温度T/K 300
发射系数ε 0.84
氧气反应当量比uo 4
  
模型主要物性参数
  (网络版彩图)火蔓延过程中材料表面(y=0)温度分布
  (网络版彩图)点火阶段、非稳定火蔓延阶段和稳定火蔓延阶段垂直于材料表面温度梯度分布
  (网络版彩图)稳定火蔓延阶段材料内部温度和温度梯度分布
  (网络版彩图)材料内部温度场
  (网络版彩图)稳定火蔓延条件下熔融相界面固相线与液相线形态拟合结果对比
  (网络版彩图)火焰前锋气相结构
1 BHATTACHARJEE S , AYALA R , WAKAI K , et al. Opposed-flow flame spread in microgravity-theoretical prediction of spread rate and flammability map[J]. Proceedings of the Combustion Institute, 2005. 30 (2): 2279- 2286.
2 BHATTACHARJEE S , TAKAHASHI S , WAKAI K , et al. Correlating flame geometry in opposed-flow flame spread over thin fuels[J]. Proceedings of the Combustion Institute, 2011. 33 (2): 2465- 2472.
3 BHATTACHARJEE S , TRAN W , LAUE M , et al. Experimental validation of a correlation capturing the boundary layer effect on spread rate in the kinetic regime of opposed-flow flame spread[J]. Proceedings of the Combustion Institute, 2015. 35 (3): 2631- 2638.
doi: 10.1016/j.proci.2014.06.125
4 BHATTACHARJEE S , LAUE M , CARMIGNANI L , et al. Opposed-flow flame spread:A comparison of microgravity and normal gravity experiments to establish the thermal regime[J]. Fire Safety Journal, 2016. 79 (Supplement C): 111- 118.
5 BHATTACHARJEE S , SIMSEK A , MILLER F , et al. Radiative, thermal, and kinetic regimes of opposed-flow flame spread:A comparison between experiment and theory[J]. Proceedings of the Combustion Institute, 2017. 36 (2): 2963- 2969.
doi: 10.1016/j.proci.2016.06.025
6 FERNANDEZ-PELLO A , RAY S , GLASSMAN I . Downward flame spread in an opposed forced flow[J]. Combustion Science and Technology, 1978. 19 (1-2): 19- 30.
doi: 10.1080/00102207808946860
7 FERNANDEZ-PELLO A , WILLIAMS F A . Laminar flame spread over PMMA surfaces[J]. Symposium (International) on Combustion, 1975. 15 (1): 217- 231.
doi: 10.1016/S0082-0784(75)80299-2
8 FERNANDEZ-PELLO A C , SANTORO R J . On the dominant mode of heat transfer in downward flame spread[J]. Symposium (International) on Combustion, 1979. 17 (1): 1201- 1209.
doi: 10.1016/S0082-0784(79)80114-9
9 FERNáNDEZ-TARRAZO E , LI?áN A . Flame spread over solid fuels in opposite natural convection[J]. Proceedings of the Combustion Institute, 2002. 29 (1): 219- 225.
10 WICHMAN I S , WILLIAMS F A . Comments on rates of creeping spread of flames over thermally thin fuels[J]. Combustion Science and Technology, 1983. 33 (1-4): 207- 214.
doi: 10.1080/00102208308923676
11 TOLEJKO K , FEIER I I , T'IEN J S . Effects of fuel Lewis number on flame spread over solids[J]. Proceedings of the Combustion Institute, 2005. 30 (2): 2263- 2270.
12 JOHNSTON M C , T'IEN J S , MUFF D E , et al. Self induced buoyant blow off in upward flame spread on thin solid fuels[J]. Fire Safety Journal, 2015. 71, 279- 286.
doi: 10.1016/j.firesaf.2014.11.007
13 BLASI C D , WICHMAN I S . Effects of solid-phase properties on flames spreading over composite materials[J]. Combustion and Flame, 1995. 102 (3): 229- 240.
doi: 10.1016/0010-2180(95)00003-O
14 BLASI C D , CRESCITELLI S , RUSSO G , et al. Numerical simulation of opposed flow flame spread over a thermally thick solid fuel[J]. Combustion Science and Technology, 1987. 54 (1-6): 25- 36.
doi: 10.1080/00102208708947041
15 ZHENG G Y , WICHMAN I S , BENARD A . Opposed-flow flame spread over polymeric materials:Influence of phase change[J]. Combustion and Flame, 2001. 124 (3): 387- 408.
16 MIRANDA FUENTES J , JOHANNES K , KUZNIK F , et al. Melting with convection and radiation in a participating phase change material[J]. Applied Energy, 2013. 109 (Supplement C): 454- 461.
17 ANANTH R , NDUBIZU C C , TATEM P A . Burning rate distributions for boundary layer flow combustion of a PMMA plate in forced flow[J]. Combustion and Flame, 2003. 135 (1): 35- 55.
18 BHATTACHARJEE S , BHASKARAN K , ALTENKIRCH R A . Effects of pyrolysis kinetics on opposed-flow flame spread modeling[J]. Combustion Science and Technology, 1994. 100 (1-6): 163- 182.
doi: 10.1080/00102209408935451
19 DL BLASI C , CONTINILLO G , CRESCITELLI S , et al. Numerical simulation of opposed flow flame spread over a thermally thick solid fuel[J]. Combustion Science and Technology, 1987. 54 (1-6): 25- 36.
doi: 10.1080/00102208708947041
20 JUSTE G L , CONTAT-RODRIGO L . Temperature field reconstruction from phase-map obtained with moiré deflectometry in diffusion flame on solids[J]. Combustion Science and Technology, 2007. 179 (7): 1287- 1302.
doi: 10.1080/00102200601147773
21 BHATTACHARIEE S , KING M D , TAKAHASHI S , et al. Downward flame spread over poly(methyl)methacrylate[J]. Proceedings of the Combustion Institute, 2000. 28 (2): 2891- 2897.
22 BHATTACHARJEE S , KING M D , PAOLINI C . Structure of downward spreading flames:A comparison of numerical simulation, experimental results and a simplified parabolic theory[J]. Combustion Theory and Modelling, 2006. 8 (1): 23- 39.
23 FERNáNDEZ-PELLO A , WILLIAMS F A . A theory of laminar flame spread over flat surfaces of solid combustibles[J]. Combustion and Flame, 1977. 28 (C): 251- 277.
24 WICHMAN I S . Flame spread in an opposed flow with a linear velocity-gradient[J]. Combustion and Flame, 1983. 50 (3): 287- 304.
25 DE RIS J . Spread of a laminar diffusion flame[J]. Proceedings of the Combustion Institute, 1969. 12 (1): 241- 252.
26 RAY S R , GLASSMAN I . The detailed processes involved in flame spread over solid fuels[J]. Combustion Science and Technology, 1983. 32 (1-4): 33- 48.
doi: 10.1080/00102208308923651
[1] 史琳, 许强辉. 稠油注空气开发技术的基础研究与应用[J]. 清华大学学报(自然科学版), 2022, 62(4): 722-734.
[2] 何鑫, 薛瑞, 郑星, 张骞, 龚建良. 边界层燃烧在超燃冲压发动机内的摩擦减阻特性[J]. 清华大学学报(自然科学版), 2022, 62(3): 562-572.
[3] 闫慧慧, 周伯豪, 李豪, 张煜洲, 兰旭东. 基于ANSYS的涡轴发动机压气机设计[J]. 清华大学学报(自然科学版), 2022, 62(3): 549-554,580.
[4] 张旨晗, 刘辉, 吕振雷, 侯岩松, 孙立风, 王石, 吴朝霞, 刘亚强. 大动物SPECT系统设计与数值模拟[J]. 清华大学学报(自然科学版), 2022, 62(12): 1875-1883.
[5] 韩亚东, 谭磊, 刘亚斌. 基于可控载荷的混流泵叶轮设计及试验研究[J]. 清华大学学报(自然科学版), 2022, 62(12): 1930-1937.
[6] 陈猛, 陈昭, 刘荣正, 刘兵, 邵友林, 唐亚平, 刘马林. 流化床-化学气相沉积颗粒包覆过程数值模拟[J]. 清华大学学报(自然科学版), 2022, 62(10): 1645-1659.
[7] 沈锴欣, 贺治超, 翁文国. 化工多米诺事故中物理效应间的耦合作用[J]. 清华大学学报(自然科学版), 2022, 62(10): 1559-1570.
[8] 李东杰, 周伯豪, 梁骞, 兰旭东. 微型涡喷发动机燃烧室优化设计[J]. 清华大学学报(自然科学版), 2021, 61(10): 1212-1220.
[9] 张寒, 黄泽宇, 张国君, 欧阳葆华, 吴学民, 郑丽丽. 下料方式和流量分配对D4合成SiO2的影响[J]. 清华大学学报(自然科学版), 2020, 60(3): 233-238.
[10] 鲁立, 胡梦佳, 蔡志鹏, 李克俭, 吴瑶, 潘际銮. 核级管端法兰面在线堆焊修复的残余应力[J]. 清华大学学报(自然科学版), 2020, 60(1): 89-94.
[11] 章若茵, 吴保生. 牛栏江滇池补水工程取水防沙措施的模拟研究[J]. 清华大学学报(自然科学版), 2019, 59(5): 354-363.
[12] 董明晔, 赵玥, 贾金龙, 李权, 王福德, 吴爱萍. 铝合金筒壁电弧增材制造数值模拟中分段弧形体热源模型的建立[J]. 清华大学学报(自然科学版), 2019, 59(10): 823-830.
[13] 张福宏, 陈举师, 高杨, 汲银凤. 煤层干式钻孔粉尘运动及粒径分布的数值模拟[J]. 清华大学学报(自然科学版), 2018, 58(10): 872-880.
[14] 张展博, 李胜强. 圆柱水箱中水平多孔挡板对液面晃动影响的数值模拟研究[J]. 清华大学学报(自然科学版), 2018, 58(10): 934-940.
[15] 杨明祥, 王浩, 蒋云钟, 雷晓辉, 宋健蛟. 基于数值模拟的雅砻江流域风能资源初步评估[J]. 清华大学学报(自然科学版), 2018, 58(1): 101-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn