Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (1): 42-49    DOI: 10.16511/j.cnki.qhdxxb.2020.21.015
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
截瘫助行外骨骼髋关节离合式弹性驱动器
刘宇霖,李银波,卢仁浩,关鑫宇*(),季林红
清华大学 机械工程系, 摩擦学国家重点实验室智能与生物机械分室, 北京 100084
Clutched elastic actuator to drive a lower limb exoskeleton hip joint for paraplegic patients
Yulin LIU,Yinbo LI,Renhao LU,Xinyu GUAN*(),Linhong JI
Division of Intelligent and Biomechanical System, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(6479 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 

外骨骼能够帮助截瘫患者行走和康复训练。动力助行外骨骼对患者自身的肌肉力量要求较低,但其驱动电机尺寸、重量较大;无动力储能助行外骨骼不需要电机,但对患者的肌力有一定要求,长时间行走容易导致患者疲劳。该文结合两者优势,设计了一种基于棘轮棘爪机构的离合式弹性驱动器,作为助行外骨骼机器人的髋关节驱动器。在支撑期,截瘫患者依靠自身肌力和拐杖转移重心,同时电机将能量储存在扭簧里;在摆动期,已充分储能的扭簧迅速释放能量帮助患者向前迈腿。该文建立了驱动器在支撑期(扭簧储能)和摆动期(扭簧释能)的动力学模型,并以峰值功率为优化目标,优化参数包括电机角加和减速度。仿真结果显示,对比直接用电机和减速器驱动患者髋关节,该驱动器可显著减小电机平均功率和峰值功率,因此可以通过离合式弹性驱动器特殊的设计,选用额定力矩和功率低的小电机,达到减小电机、关节驱动器乃至外骨骼整体结构的尺寸和重量的目的。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘宇霖
李银波
卢仁浩
关鑫宇
季林红
关键词 外骨骼柔性驱动器离合式驱动器棘轮棘爪截瘫助行    
Abstract

Lower limb exoskeletons can help paraplegic patients walk through rehabilitation. Powered exoskeletons do not require much muscle strength in the affected limbs, but the drive motors are rather large and heavy. Unpowered energy-storage exoskeletons do not require motors, but require more patient muscle strength which may cause fatigue during continuous use. This paper describes a clutched elastic actuator based on a ratchet mechanism that can be used as the hip joint driver for a lower limb of an exoskeleton. Patients rely on their upper limb and trunk muscles and crutches to slowly transfer the center of gravity during the support phase. The motor then stores energy during this motion in a torsional spring. During the swing phase, the torsional spring then quickly releases energy to help the patient step forward and complete a gait cycle. This paper presents a model for the driver during the support phase (spring energy storage) and the swing phase (spring energy release). The angular acceleration and deceleration are selected to minimize the peak power. Simulations show that the clutched elastic actuator significantly reduces the average power and the peak power compared with a motor and gearbox driving the patient's hip joint. Therefore, the system can have small low torque, low power motors to reduce the size and weight of the actuators and the entire exoskeleton.

Key wordsexoskeletons    compliant actuators    clutched actuators    ratchet mechanisms    paraplegic
收稿日期: 2020-05-27      出版日期: 2020-11-26
通讯作者: 关鑫宇     E-mail: guanxinyu@tsinghua.edu.cn
引用本文:   
刘宇霖,李银波,卢仁浩,关鑫宇,季林红. 截瘫助行外骨骼髋关节离合式弹性驱动器[J]. 清华大学学报(自然科学版), 2021, 61(1): 42-49.
Yulin LIU,Yinbo LI,Renhao LU,Xinyu GUAN,Linhong JI. Clutched elastic actuator to drive a lower limb exoskeleton hip joint for paraplegic patients. Journal of Tsinghua University(Science and Technology), 2021, 61(1): 42-49.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.21.015  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I1/42
  RLA步态周期图[11]
  离合式弹性驱动器原理图
  离合装置原理图
  模型示意图
10.16511/j.cnki.qhdxxb.2020.21.015.T001

驱动器模型参数及人体模型参数

参数符号 参数含义 参数数值
Jm 电机的转动惯量 44 g·cm2
Jg 齿轮减速箱相对于输出轴的转动惯量 9.4 g·cm2
Js 小锥齿轮的转动惯量 3.1 g·cm2
Jb 大锥齿轮的转动惯量 204.5 g·cm2
Ng 齿轮减速箱的传动比 112.67
Nb 锥齿轮传动的传动比 3.615
ηg 齿轮减速箱的效率 0.74
ηb 锥齿轮传动的效率 0.95
k 扭簧的刚度 32.34 N·m/rad
g 重力加速度 9.8 m/s2
KT 电机转矩常数 37.5 mN·m/A
KE 电机转速常数 255 r/(min·V)
R 电机内阻 0.236 Ω
ml 人腿质量 11.323 kg [15]
ll 人腿质心距髋关节转轴的距离 0.383 m [15]
jl 人腿相对于髋关节的转动惯量 2.834 kg·m2 [16]
  
驱动器模型参数及人体模型参数
  不同α1α2组合条件下离合式弹性驱动器峰值功率与平均功率
  峰值功率和平均功率在边界上与α1α2的关系
  离合式弹性驱动器和刚性驱动器功率-时间曲线
  离合式弹性驱动器和刚性驱动器力矩-时间曲线
10.16511/j.cnki.qhdxxb.2020.21.015.T002

不同优化目标下离合式弹性驱动器和刚性驱动器的参数

驱动器 优化目标 峰值功率/W 平均功率/W 峰值力矩/(mN·m) 均方根力矩/(mN·m)
离合式弹性驱动器 峰值功率 6.150 4.160 64.6 47.0
平均功率 15.066 3.931 64.2 29.1
刚性驱动器 峰值功率 111.511 28.236 129.6 79.8
平均功率 142.794 25.614 172.9 87.7
  
不同优化目标下离合式弹性驱动器和刚性驱动器的参数
1 KIRSHBLUM S C , BURNS S P , BIERING-SORENSEN F , et al. International standards for neurological classification of spinal cord injury (Revised 2011)[J]. The Journal of Spinal Cord Medicine, 2011. 34 (6): 535- 546.
doi: 10.1179/204577211X13207446293695
2 MAIMOUN L , FATTAL C , MICALLEF J , et al. Bone loss in spinal cord-injured patients:From physiopathology to therapy[J]. Spinal Cord, 2006. 44 (4): 203- 210.
doi: 10.1038/sj.sc.3101832
3 JOHNSON W B , FATONE S , GARD S A . Walking mechanics of persons who use reciprocating gait orthoses[J]. Journal of Rehabilitation Research and Development, 2009. 46 (3): 435- 446.
4 COLOMBO G , WIRZ M , DIETZ V . Driven gait orthosis for improvement of locomotor training in paraplegic patients[J]. Spinal Cord, 2001. 39 (5): 252- 255.
doi: 10.1038/sj.sc.3101154
5 陈峰.可穿戴型助力机器人技术研究[D].合肥:中国科学技术大学, 2007.
5 CHEN F. Research on the wearable power assist robot[D]. Hefei: University of Science and Technology of China, 2007. (in Chinese)
6 ESQUENAZI A , TALATY M , PACKEL A , et al. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury[J]. American Journal of Physical Medicine & Rehabilitation, 2012. 91 (11): 911- 921.
7 PAN Y T, LAMB Z, MACIEVICH J, et al. A vibrotactile feedback device for balance rehabilitation in the EksoGTTM robotic exoskeleton[C]//Proceedings of the 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob). Kuala Lumpur, Malaysia: IEEE, 2018: 569-576.
8 IMAI H, NOZAWA M, KAWAMURA Y, et al. Human motion oriented control method for humanoid robot[C]//Proceedings of the 11th IEEE International Workshop on Robot and Human Interactive Communication. Berlin, Germany: IEEE, 2002: 211-216.
9 AUDU M L , TO C S , KOBETIC R , et al. Gait evaluation of a novel hip constraint orthosis with implication for walking in paraplegia[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2010. 18 (6): 610- 618.
doi: 10.1109/TNSRE.2010.2047594
10 GUAN X, JI L, WANG R, et al. Optimization of an unpowered energy-stored exoskeleton for patients with spinal cord injury[C]//Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Orlando, FL, USA: IEEE, 2016: 5030-5033.
11 WHITTLE M W . Gait analysis:An introduction[M]. 2nd ed. London: Reed Educational and Professional Publishing, 1997. 125- 142.
12 吴谦.截瘫助行下肢外骨骼稳定步态参数学习及其仿真实现[D].成都:电子科技大学, 2019.
12 WU Q. Simulation realization of stable gait parameters learning for paraplegic lower limb walking assistance exoskeleton[D]. Chengdu: University of Electronic Science and Technology of China, 2019. (in Chinese)
13 LI Y, LI Z, PENZLIN B, et al. Design of the clutched variable parallel elastic actuator (CVPEA) for lower limb exoskeletons[C]//Proceedings of the 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Berlin, Germany: IEEE, 2019: 4436-4439.
14 LI Y , GUAN X , LI Z , et al. Analysis, design, and preliminary evaluation of a parallel elastic actuator for power-efficient walking assistance[J]. IEEE Access, 2020. 8, 88060- 88075.
doi: 10.1109/ACCESS.2020.2993183
16 WINTER D A . Biomechanics and motor control of human movement[M]. 4 ed. New Jersey: John Wiley & Sons, 2009. 83- 86.
17 LI Y , GUAN X , HAN X , et al. Design and preliminary validation of a lower limb exoskeleton with compact and modular actuation[J]. IEEE Access, 2020. 8, 66338- 66352.
doi: 10.1109/ACCESS.2020.2985910
18 GUAN X , LIU Y , GAO L , et al. Trunk muscle activity patterns in a person with spinal cord injury walking with different un-powered exoskeletons:A case study[J]. Journal of Rehabilitation Medicine, 2016. 48 (4): 390- 395.
doi: 10.2340/16501977-2065
[1] 黎帆, 李东兴, 王殿君, 陈亚, 唐晓强. 基于欠驱动并联索机构的肩关节助力外骨骼[J]. 清华大学学报(自然科学版), 2022, 62(1): 141-148.
[2] 李银波, 汤子汉, 季林红, 蒙奎霖, 李质斌, 关鑫宇. 下肢外骨骼人机互连装置对关节内力的影响[J]. 清华大学学报(自然科学版), 2019, 59(7): 544-550.
[3] 马青川, 季林红, 王人成, 李伟. 用于截瘫患者康复训练的足底轮式驱动外骨骼[J]. 清华大学学报(自然科学版), 2017, 57(6): 597-603.
[4] 关鑫宇, 季林红, 王人成. 无动力储能式截瘫助行外骨骼弹簧刚度优化[J]. 清华大学学报(自然科学版), 2017, 57(11): 1179-1184.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn