Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (3): 239-247    DOI: 10.16511/j.cnki.qhdxxb.2020.22.001
  核能与新能源工程 本期目录 | 过刊浏览 | 高级检索 |
具有特殊结构的自由旋射流流动特性
胡羽, 龚迎莉, 孙新玉, 黄兴亮, 祁海鹰
清华大学 能源与动力工程系, 热科学与动力工程教育部重点实验室, 北京 100084
Flow characteristics of free swirling jet with special structures
HU Yu, GONG Yingli, SUN Xinyu, HUANG Xingliang, QI Haiying
Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(5120 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为深化对旋涡热强化效应的认识,针对特殊旋涡——龙卷旋涡开展冷态流动特性的实验研究。测量了不同旋射管进气道面积对龙卷旋涡初始真空度的影响及强旋状态下的速度分布。结果表明:旋射管质量流量对初始真空度具有决定性影响,质量流量越高,初始真空度绝对值越大;龙卷旋涡的各速度分量均可用半经验涡模型统一表征,速度分布随旋流强度的降低出现显著转变;中空结构的出现及维持的根本原因是较高的旋流强度;径向卷吸的出现标志着旋流强度的显著降低。该研究成果丰富了对龙卷旋涡的流体力学认识,为揭示旋流热强化效应机理的研究提供了重要参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡羽
龚迎莉
孙新玉
黄兴亮
祁海鹰
关键词 旋涡热强化龙卷旋涡旋射管速度分布涡模型    
Abstract:Vortex thermal-intensification was studied by measuring the cold flow characteristics of a tornado-like vortex. The experiments measured the effect of the inlet channel area of a vortex generator on the initial vacuum and velocity distribution with strong swirl. The results show that the air mass flow rate strongly influences the initial vacuum with the vacuum increasing with the mass flow rate. All the velocity components of the tornado-like vortex can be described by semi-empirical vortex models with the velocity distribution varying significantly as the swirl intensity decreases. A strong swirl intensity is found crucial to the formation and maintenance of the hollow-core structure. The occurrence of radial entrainment indicates a significant decrease in the swirl intensity. These observations extend the understanding of the tornado-like vortex related to vortex thermal-intensification and provide important reference for exploring these mechanisms in the future.
Key wordsvortex thermal-intensification    tornado-like vortex    vortex generator    velocity distribution    vortex model
收稿日期: 2019-05-06      出版日期: 2020-03-03
基金资助:国家自然科学基金资助项目(51176092)
通讯作者: 祁海鹰,教授,E-mail:hyqi@mail.tsinghua.edu.cn     E-mail: hyqi@mail.tsinghua.edu.cn
引用本文:   
胡羽, 龚迎莉, 孙新玉, 黄兴亮, 祁海鹰. 具有特殊结构的自由旋射流流动特性[J]. 清华大学学报(自然科学版), 2020, 60(3): 239-247.
HU Yu, GONG Yingli, SUN Xinyu, HUANG Xingliang, QI Haiying. Flow characteristics of free swirling jet with special structures. Journal of Tsinghua University(Science and Technology), 2020, 60(3): 239-247.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.22.001  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I3/239
  图1 实验系统流程图
  图2 旋射管结构图
  表1 旋涡流动特性实验工况及条件
  图3 (网络版彩图)龙卷旋涡形态[4]
  图4 初始真空度随旋射管进气道面积的变化
  图5 初始真空度与进口切向速度的关系
  图6 初始真空度随旋射管流量的变化
  图7 轴向速度分布
  图8 切向速度分布
  图9 径向速度原始数据
  图1 0 量纲为1的径向速度分布
  表2 量纲为1的径向速度分布拟合曲线系数
[1] 高歌. 内部报告[R]. 北京:航空发动机气动热力国家重点实验室, 2009.GAO G. Internal report[R]. Beijing:National Key Laboratory of Aeronautical Engine Pneumatic Heat, BUAA, 2009. (in Chinese)
[2] 李志强. 内部报告[R]. 北京:航空发动机气动热力国家重点实验室, 2009.LI Z Q. Internal report[R]. Beijing:National Key Laboratory of Aeronautical Engine Pneumatic Heat, BUAA, 2009. (in Chinese)
[3] 张兆顺, 崔桂香. 流体力学[M]. 北京:清华大学出版社, 2006.ZHANG Z S, CUI G X. Fluid mechanics[M]. Beijing:Tsinghua University Press, 2006. (in Chinese)
[4] 祁海鹰, 黄兴亮, 胡羽, 等.龙卷旋涡的真空与能量分离特性研究[J]. 清华大学学报(自然科学版), 2016, 56(8):893-900, 907.QI H Y, HUANG X L, HU Y, et al. Vacuum and energy seperation characteristics of tornado-like vortices[J]. Journal of Tsinghua University (Science and Technology, 2016, 56(8):893-900, 907. (in Chinese)
[5] 李科, 胡羽, 黄兴亮, 等. 龙卷旋涡的大涡模拟及能量分离机理研究[J]. 燃烧科学与技术, 2016, 22(3):198-205.LI K, HU Y, HUANG X L, et al. Studies on tornado-like vortex flow and its mechanism of energy separation by large-eddy simulation[J]. Journal of Combustion Science and Technology, 2016, 22(3):198-205.(in Chinese)
[6] ZHANG R, ZHAO Z, DU Q. An experimental study on the flow characteristic of a swirling liquid jet in its near field[C]//Proceedings of 2011 Intetnational Conference of Electrical and Control Engineering, ICECE 2011. Yichang, China, 2011. 1969-1972.
[7] LILLEY D G. Swirl flows in combustion:A review[J]. AIAA Journal, 1977, 15:1063-1078.
[8] SYRED N, BEER J M. Combustion in swirling flows:A review[J]. Combustion and Flame, 1974, 23:143-201.
[9] RENARD P-H, THEVENIN D, ROLON J C, et al. Dynamics of flame/vortex interactions[J]. Progress in Energy and Combustion Science, 2000, 26:225-282.
[10] AHMED S F, BALACHANDRAN R, MARCHIONE T, et al. Spark ignition of turbulent nonpremixed bluff-body flames[J]. Combustion and Flame, 2007, 151:366-385.
[11] PALIES P, DUROX D, SCHULLER T, et al. Experimental study on the effect of swirler geometry and swirl number on flame describing functions[J]. Combustion Science and Technology, 2011, 183:704-717.
[12] CHIGIER N A, CHERVINSKY A. Experimental investigation of swirling vortex motion in jets. Journal of Applied Mechanics, 1967, 34(2):443-451. DOI:10.1115/1.3607703.
[13] BURGERS J M. A mathematical model illustrating the theory of turbulence[J]. Advances in Applied Mechanics, 1948, 1:171-199.
[14] ROTT N. On the viscous core of a line vortex II[J]. Zeitschrift für Angewandte Mathematik und Physik, 1959, 10(1):73-81.
[15] SULLIVAN R D. A two-cell vortex solution of the Navier-Stokes equations. Journal of the Aero/Space Sciences, 2012:767-768. DOI:10.2514/8.8303.
[16] LONG R R. A vortex in an infinite viscous fluid[J]. Journal of Fluid Mechanics, 1961, 11:611-624.
[17] XU Z, HANGAN H. An inviscid solution for modeling of tornadolike vortices[J]. Journal of Applied Mechanics, 2009, 76:031011.
[18] LUCCA-NEGRO O, O'DOHERTY T. Vortex breakdown:A review[J]. Progress in Energy and Combustion Science, 2001, 27:431-481.
[19] KIDA S, GOTO S, MAKIHARA T. Low-pressure vortex analysis in turbulence:Life, structure, and dynamical role of vortices[R]. Tokyo, Japan:Theory and Computer Simulation Center, National Institute for Fusion Science, 2002.
[20] BERNARD P S, THOMAS J M, HANDLER R A. Vortex dynamics and the production of reynolds stress[J]. Journal of Fluid Mechanics Digital Archive, 1993, 253:385-419.
[21] AL-ABDELI Y M, MASRI A R. Review of laboratory swirl burners and experiments for model validation[J]. Experimental Thermal and Fluid Science, 2015, 69:178-196.
[22] 祁海鹰. "有隙"锥形旋流器燃烧稳定性的实验研究[D]. 北京:清华大学, 1985.QI H Y. Experimental study on combustion stability of gaped conical-swirler[D]. Beijing:Tsinghua University, 1985.(in Chinese)
[23] ZHU X, LI R, LI D, et al. Experimental study and RANS calculation on velocity and temperature of a kerosene-fueled swirl laboratory combustor with and without centerbody air injection[J]. International Journal of Heat and Mass Transfer, 2015, 89:964-976.
[24] TERHAAR S, REICHEL T G, SCHRÖDINGER C, et al. Vortex breakdown types and global modes in swirling combustor flows with axial injection[J]. Journal of Propulsion and Power, 2015, 31:219-229.
[25] SPENCER A, MCGUIRK J J, MIDGLEY K. Vortex breakdown in swirling fuel injector flows[J]. Journal of Engineering for Gas Turbines and Power, 2008, 130:021503.
[26] LI Y, LI R, LI D, et al. Combustion characteristics of a slotted swirl combustor:An experimental test and numerical validation[J]. International Communications in Heat and Mass Transfer, 2015, 66:140-147.
[1] 刘贺子, 陈涛. 基于视频识别的混合非机动车速度分布模型[J]. 清华大学学报(自然科学版), 2021, 61(2): 144-151.
[2] 祁海鹰, 黄兴亮, 胡羽, 李科, 孙新玉, 王志鹏. 龙卷旋涡的真空与能量分离特性研究[J]. 清华大学学报(自然科学版), 2016, 56(8): 893-900,907.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn