Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (10): 814-821    DOI: 10.16511/j.cnki.qhdxxb.2020.22.003
  专题:容错计算 本期目录 | 过刊浏览 | 高级检索 |
多传感器数据融合的复杂人体活动识别
宋欣瑞, 张宪琦, 张展, 陈新昊, 刘宏伟
哈尔滨工业大学 计算机科学与技术学院, 哈尔滨 150001
Multi-sensor data fusion for complex human activity recognition
SONG Xinrui, ZHANG Xianqi, ZHANG Zhan, CHEN Xinhao, LIU Hongwei
School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
全文: PDF(5270 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 基于传感器的人体活动识别被广泛应用到各个领域,但利用多种异构传感器识别日常的复杂人体活动,仍然存在很多问题。对多个异构传感器数据进行数据融合时,存在兼容性问题,导致对并发复杂活动识别准确率较低。该文提出基于多传感器决策级数据融合的多任务深度学习模型。该模型利用深度学习自动地从每个传感器原始数据中进行特征提取。利用多任务学习的联合训练方法将并发复杂活动分为多个子任务,多个子任务共享网络结构,相互促进学习,提高模型的泛化性能。实验表明:该模型对周期性活动的识别准确率可达到94.6%,非周期性活动可达到93.4%,并发复杂活动可达到92.8%。该模型比3个基线模型的识别准确率平均高出8%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋欣瑞
张宪琦
张展
陈新昊
刘宏伟
关键词 复杂人体活动识别多传感器数据融合深度学习多任务学习    
Abstract:Human activity recognition based on wearable sensors has been widely used in various fields, but complex human activity recognition based on multiple wearable sensors still has many problems. These problems include the incompatibility of many signals from multiple sensors and the low classification accuracy of complex activities. This paper presents a multi-sensor decision-level data fusion model using multi-task deep learning for complex activity recognition. The model uses deep learning to automatically extract the features of the original sensor data. In addition, the concurrent complex activities are divided into multiple sub-tasks using a multi-task learning method. Each sub-task shares the network structure and promotes mutual learning, which improves the generalization performance of the model. Tests show that the model can achieve a 94.6% recognition accuracy rate for cyclical activities, 93.4% for non-cyclical activities, and 92.8% for concurrent complex activities. The recognition accuracy rate is on average 8% higher than those of three baseline models.
Key wordscomplex human activity recognition    multi-sensor data fusion    deep learning    multi-task learning
收稿日期: 2019-09-15      出版日期: 2020-07-09
基金资助:张展,副教授,E-mail:zhangzhan@hit.edu.cn
引用本文:   
宋欣瑞, 张宪琦, 张展, 陈新昊, 刘宏伟. 多传感器数据融合的复杂人体活动识别[J]. 清华大学学报(自然科学版), 2020, 60(10): 814-821.
SONG Xinrui, ZHANG Xianqi, ZHANG Zhan, CHEN Xinhao, LIU Hongwei. Multi-sensor data fusion for complex human activity recognition. Journal of Tsinghua University(Science and Technology), 2020, 60(10): 814-821.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.22.003  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I10/814
  
  
  
  
  
  
  
  
  
  
  
[1] CORNACCHIA M, OZCAN K, ZHENG Y, et al. A survey on activity detection and classification using wearable sensors[J]. IEEE Sensors Journal, 2017, 17(2):386-403.
[2] SHOAIB M, BOSCH S, INCEL O D, et al. Complex human activity recognition using smartphone and wrist-worn motion sensors[J]. Sensors, 2016, 16(4):426.
[3] GRAVINA R, ALINIA P, GHASEMZADEH H, et al. Multi-sensor fusion in body sensor networks:State-of-the-art and research challenges[J]. Information Fusion, 2017, 35:68-80.
[4] CAPELA N A, LEMAIRE E D, BADDOUR N. Feature selection for wearable smartphone-based human activity recognition with able bodied, elderly, and stroke patients[J]. PLoS One, 2015, 10(4):e0124414.
[5] BULLING A, BLANKE U, SCHIELE B. A tutorial on human activity recognition using body-worn inertial sensors[J]. ACM Computing Surveys (CSUR), 2014, 46(3):33.
[6] KUNCHEVA L I. Combining pattern classifiers:Methods and algorithms[M]. Hoboken, USA:John Wiley & Sons, 2004.
[7] DIETTERICH T G. Ensemble methods in machine learning[C]//Proceedings of the First International Workshop on Multiple Classifier Systems. Cagliari, Italy, 2000:1-15.
[8] IGNATOV A. Real-time human activity recognition from accelerometer data using convolutional neural networks[J]. Applied Soft Computing, 2018, 62:915-922.
[9] YANG J B, NHUT N M, SAN P P, et al. Deep convolutional neural networks on multichannel time series for human activity recognition[C]//Proceedings of the 24th International Joint Conference on Artificial Intelligence. Buenos Aires, Argentina, 2015.
[10] LEE S M, YOON S M, CHO H. Human activity recognition from accelerometer data using convolutional neural network[C]//2017 IEEE International Conference on Big Data and Smart Computing (BigComp). Jeju, South Korea, 2017:131-134.
[11] KIM J C, CLEMENTS M A. Multimodal affect classification at various temporal lengths[J]. IEEE Transactions on Affective Computing, 2015, 6(4):371-384.
[12] ORDÓÑEZ F, ROGGEN D. Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition[J]. Sensors, 2016, 16(1):115.
[13] CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[Z]. arXiv preprint. arXiv:1412.3555, 2014.
[14] VAIZMAN Y, ELLIS K, LANCKRIET G. Recognizing detailed human context in the wild from smartphones and smartwatches[J]. IEEE Pervasive Computing, 2017, 16(4):62-74.
[15] VAIZMAN Y, WEIBEL N, LANCKRIET G. Context recognition in-the-wild:Unified model for multi-modal sensors and multi-label classification[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2017, 1(4):168.
[1] 黄贲, 康飞, 唐玉. 基于目标检测的混凝土坝裂缝实时检测方法[J]. 清华大学学报(自然科学版), 2023, 63(7): 1078-1086.
[2] 苗旭鹏, 张敏旭, 邵蓥侠, 崔斌. PS-Hybrid: 面向大规模推荐模型训练的混合通信框架[J]. 清华大学学报(自然科学版), 2022, 62(9): 1417-1425.
[3] 梅杰, 李庆斌, 陈文夫, 邬昆, 谭尧升, 刘春风, 王东民, 胡昱. 基于目标检测模型的混凝土坯层覆盖间歇时间超时预警[J]. 清华大学学报(自然科学版), 2021, 61(7): 688-693.
[4] 管志斌, 王晓萌, 辛伟, 王嘉捷. 源代码缺陷检测数据生成及标注方法[J]. 清华大学学报(自然科学版), 2021, 61(11): 1240-1245.
[5] 韩坤, 潘海为, 张伟, 边晓菲, 陈春伶, 何舒宁. 基于多模态医学图像的Alzheimer病分类方法[J]. 清华大学学报(自然科学版), 2020, 60(8): 664-671,682.
[6] 王志国, 章毓晋. 监控视频异常检测:综述[J]. 清华大学学报(自然科学版), 2020, 60(6): 518-529.
[7] 蒋文斌, 王宏斌, 刘湃, 陈雨浩. 基于AVX2指令集的深度学习混合运算策略[J]. 清华大学学报(自然科学版), 2020, 60(5): 408-414.
[8] 余传明, 原赛, 胡莎莎, 安璐. 基于深度学习的多语言跨领域主题对齐模型[J]. 清华大学学报(自然科学版), 2020, 60(5): 430-439.
[9] 刘宗林, 张梅山, 甄冉冉, 公佐权, 余南, 付国宏. 融入罪名关键词的法律判决预测多任务学习模型[J]. 清华大学学报(自然科学版), 2019, 59(7): 497-504.
[10] 张思聪, 谢晓尧, 徐洋. 基于dCNN的入侵检测方法[J]. 清华大学学报(自然科学版), 2019, 59(1): 44-52.
[11] 芦效峰, 蒋方朔, 周箫, 崔宝江, 伊胜伟, 沙晶. 基于API序列特征和统计特征组合的恶意样本检测框架[J]. 清华大学学报(自然科学版), 2018, 58(5): 500-508.
[12] 张新钰, 高洪波, 赵建辉, 周沫. 基于深度学习的自动驾驶技术综述[J]. 清华大学学报(自然科学版), 2018, 58(4): 438-444.
[13] 张宇, 张鹏远, 颜永红. 基于注意力LSTM和多任务学习的远场语音识别[J]. 清华大学学报(自然科学版), 2018, 58(3): 249-253.
[14] 邹权臣, 张涛, 吴润浦, 马金鑫, 李美聪, 陈晨, 侯长玉. 从自动化到智能化:软件漏洞挖掘技术进展[J]. 清华大学学报(自然科学版), 2018, 58(12): 1079-1094.
[15] 张敏, 丁弼原, 马为之, 谭云志, 刘奕群, 马少平. 基于深度学习加强的混合推荐方法[J]. 清华大学学报(自然科学版), 2017, 57(10): 1014-1021.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn