Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (8): 701-706    DOI: 10.16511/j.cnki.qhdxxb.2020.22.009
  专题:过程系统工程 本期目录 | 过刊浏览 | 高级检索 |
计算机辅助高纯2-巯基苯并噻唑结晶溶剂设计方法
柴士阳1, 刘奇磊1, 梁馨元1, 张颂2, 郭彦锁2, 徐承秋2, 张磊1, 都健1, 袁志宏3
1. 大连理工大学 化工系统工程研究所, 大连 116024;
2. 中国尚舜化工控股有限公司, 菏泽 274300;
3. 清华大学 化学工程系, 北京 100084
Computer-aided design method of crystallization solvents for the recovery of high-purity MBT
CHAI Shiyang1, LIU Qilei1, LIANG Xinyuan1, ZHANG Song2, GUO Yansuo2, XU Chengqiu2, ZHANG Lei1, DU Jian1, YUAN Zhihong3
1. Institute of Chemical Process Systems Engineering, Dalian University of Technology, Dalian 116024, China;
2. China Sunsine Chemical Holdings Ltd., Heze 274300, China;
3. Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(2551 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 2-巯基苯并噻唑作为一种重要的硫化促进剂,广泛应用于橡胶行业。对于溶剂法制备高纯2-巯基苯并噻唑,选择合适的结晶溶剂至关重要。传统溶剂的筛选方法为实验试错,需要耗费大量的时间和金钱。该文提出了一种基于计算机辅助分子设计的结晶溶剂设计方法。计算机辅助分子设计问题可以表示为混合整数非线性规划模型,该模型包括目标函数、结构约束、性质约束和过程约束,目标函数为产品纯度和收率,同时对熔点、沸点、闪点、溶解度系数和固液相平衡进行约束。其中与过程约束相关的活度系数采用基于片段活度系数的类导体屏蔽模型(COSMO-SAC)进行预测。采用分步求解法对混合整数非线性规划模型进行求解,得到10种候选溶剂,其中8种溶剂所得产品的性能优于目前工业水平。对部分候选溶剂进行实验验证,结果显示所得产品的性能与模拟结果较为一致,从而证明了模型的有效性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
柴士阳
刘奇磊
梁馨元
张颂
郭彦锁
徐承秋
张磊
都健
袁志宏
关键词 计算机辅助分子设计2-巯基苯并噻唑结晶溶剂基于片段活度系数的类导体屏蔽模型(COSMO-SAC)实验验证    
Abstract:2-Mercapotobenzothiazole (MBT) is an important vulcanization accelerator that is widely used in the rubber industry. The solvent-based methods for the preparation of high-purity MBT need to use a suitable crystallization solvent. The traditional trial-and-error solvent selection method is time consuming and expensive. This study presents a computer-aided molecular design (CAMD) model for designing crystallization solvents. The CAMD problem is expressed as a mixed-integer non-linear programming (MINLP) model with objective functions, structural constraints, property constraints and process constraints. The objective functions are the product purity and yield. The constraints include the normal melting point, normal boiling point, flash point, solubility parameters and solid-liquid equilibrium. The activity coefficients are predicted by the conductor-like screening model based on segment activity coefficient (COSMO-SAC). The model is solved using the decomposition-based approach and 10 candidate solvents are obtained with 8 solvents having better performance than the current industrial level. Finally, the candidate solvents are experimentally verified with the results consistent with the simulation results, thus proving the validity of the model.
Key wordscomputer-aided molecular design    2-mercapotobenzothiazole    crystallization solvent    conductor-like screening model based on segment activity coefficient (COSMO-SAC)    experimental verification
收稿日期: 2019-12-06      出版日期: 2020-06-17
基金资助:都健,教授,E-mail:dujian@dlut.edu.cn
引用本文:   
柴士阳, 刘奇磊, 梁馨元, 张颂, 郭彦锁, 徐承秋, 张磊, 都健, 袁志宏. 计算机辅助高纯2-巯基苯并噻唑结晶溶剂设计方法[J]. 清华大学学报(自然科学版), 2020, 60(8): 701-706.
CHAI Shiyang, LIU Qilei, LIANG Xinyuan, ZHANG Song, GUO Yansuo, XU Chengqiu, ZHANG Lei, DU Jian, YUAN Zhihong. Computer-aided design method of crystallization solvents for the recovery of high-purity MBT. Journal of Tsinghua University(Science and Technology), 2020, 60(8): 701-706.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.22.009  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I8/701
  
  
  
  
  
  
  
  
  
  
  
[1] 张倩云. 橡胶促进剂MBT精制萃取剂的研究[D]. 上海:华东理工大学, 2015. ZHANG Q Y. Research on purification technology of rubber accelerator MBT[D]. Shanghai:East China University of Science and Technology, 2015. (in Chinese)
[2] ZHAO J H, CHENG X L, WANG L C, et al. Hydrogenation of tar residue derived from the synthesis of rubber vulcanization accelerator 2-mercaptobenzothiazole[J]. Asia-Pacific Journal of Chemical Engineering, 2017, 12(3):400-405.
[3] SEBRELL L B, BOORD C E. The preparation and properties of 1-mercapto-benzothiazole, its homologs and derivatives[J]. Journal of the American Chemical Society, 1923, 45(10):2390-2399.
[4] LI W X, LIU M L, LIU L, et al. Thermodynamic functions for solubility of 2-mercaptobenzothiazole in eleven pure organic solvents at temperatures from 273.15 K to 318.15 K and mixing properties of solutions[J]. The Journal of Chemical Thermodynamics, 2017, 112:196-203.
[5] LIU Q L, ZHANG L, LIU L L, et al. Computer-aided reaction solvent design based on transition state theory and COSMO-SAC[J]. Chemical Engineering Science, 2019, 202:300-317.
[6] GANI R, BRIGNOLE E A. Molecular design of solvents for liquid extraction based on UNIFAC[J]. Fluid Phase Equilibria, 1983, 13:331-340.
[7] MARCOULAKI E C, KOKOSSIS A C. On the development of novel chemicals using a systematic optimisation approach, part II:Solvent design[J]. Chemical Engineering Science, 2000, 55(13):2547-2561.
[8] PRETEL E J, LÓPEZ P A, BOTTINI S B, et al. Computer-aided molecular design of solvents for separation processes[J]. AIChE Journal, 1994, 40(8):1349-1360.
[9] KARUNANITHI A T, ACQUAH C, ACHENIE L E K, et al. Solvent design for crystallization of carboxylic acids[J]. Computers & Chemical Engineering, 2009, 33(5):1014-1021.
[10] ADJIMAN C S, GALINDO A, JACKSON G. Molecules matter:The expanding envelope of process design[J]. Computer Aided Chemical Engineering, 2014, 34:55-64.
[11] GMEHLING J, WITTIG R, LOHMANN J, et al. A modified UNIFAC (Dortmund) model. 4. Revision and extension[J]. Industrial & Engineering Chemistry Research, 2002, 41(6):1678-1688.
[12] LIN S T, SANDLER S I. Multipole corrections to account for structure and proximity effects in group contribution methods:Octanol-water partition coefficients[J]. The Journal of Physical Chemistry A, 2000, 104(30):7099-7105.
[13] SHELDON T J, FOLIĆ M, ADJIMAN C S. Solvent design using a quantum mechanical continuum solvation model[J]. Industrial & Engineering Chemistry Research, 2006, 45(3):1128-1140.
[14] KLAMT A, SCHVVRMANN G. COSMO:A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient[J]. Journal of the Chemical Society, Perkin Transactions 2, 1993, 2(5):799-805.
[15] KLAMT A. Conductor-like screening model for real solvents:A new approach to the quantitative calculation of solvation phenomena[J]. The Journal of Physical Chemistry, 1995, 99(7):2224-2235.
[16] KLAMT A, JONAS V, BVRGER T, et al. Refinement and parametrization of COSMO-RS[J]. The Journal of Physical Chemistry A, 1998, 102(26):5074-5085.
[17] LIN S T, SANDLER S I. A priori phase equilibrium prediction from a segment contribution solvation model[J]. Industrial & Engineering Chemistry Research, 2002, 41(5):899-913.
[18] VELDE G T, BICKELHAUPT F M, BAERENDS E J, et al. Chemistry with ADF[J]. Journal of Computational Chemistry, 2001, 22(9):931-967.
[19] LIU X Y, ZHAO Y H, NING P G, et al. Modified structural constraints for candidate molecule generation in computer-aided molecular design[J]. Industrial & Engineering Chemistry Research, 2018, 57(20):6937-6946.
[20] LIU Q L, ZHANG L, LIU L L, et al. OptCAMD:An optimization-based framework and tool for molecular and mixture product design[J]. Computers & Chemical Engineering, 2019, 124:285-301.
[21] ZHOU T, CHEN L, YE Y M, et al. An overview of mutual solubility of ionic liquids and water predicted by COSMO-RS[J]. Industrial & Engineering Chemistry Research, 2012, 51(17):6256-6264.
[22] CHEN W L, HSIEH C M, YANG L, et al. A critical evaluation on the performance of COSMO-SAC models for vapor-liquid and liquid-liquid equilibrium predictions based on different quantum chemical calculations[J]. Industrial & Engineering Chemistry Research, 2016, 55(34):9312-9322.
[23] KARUNANITHI A T, ACHENIE L E K, GANI R. A new decomposition-based computer-aided molecular/mixture design methodology for the design of optimal solvents and solvent mixtures[J]. Industrial & Engineering Chemistry Research, 2005, 44(13):4785-4797.
[1] 包劲青, 杨晨旭, 许建国, 刘洪霞, 王高成, 张广明, 程威, 周德胜. 基于有限元方法的水力压裂全三维全耦合数值模型及其物理实验验证[J]. 清华大学学报(自然科学版), 2021, 61(8): 833-841.
[2] 刘雨廷, 何榕. 单颗粒煤焦在大空间中燃烧的数值模拟方法及实验验证[J]. 清华大学学报(自然科学版), 2016, 56(6): 598-604.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn