Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (9): 726-732    DOI: 10.16511/j.cnki.qhdxxb.2020.22.013
  专题:能源地下结构与工程 本期目录 | 过刊浏览 | 高级检索 |
考虑温度影响的饱和土有效应力原理
邓岳保1, 毛伟赟1, 孔纲强2, 程冠初1
1. 宁波大学 岩土工程研究所, 宁波 315211;
2. 河海大学 岩土力学与堤坝工程教育部重点试验室, 南京 210024
Effective stress principle in saturated soil with the effect of temperature
DENG Yuebao1, MAO Weiyun1, KONG Gangqiang2, CHENG Guanchu1
1. Institute of Geotechnical Engineering, Ningbo University, Ningbo 315211, China;
2. Key Laboratory of Geomechanics and Embankment Engineering of Ministry of Education, Hohai University, Nanjing 210024, China
全文: PDF(2964 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 热-力耦合是当今岩土工程领域颇为关注的研究课题之一,是涉热岩土工程问题(如能源地下工程、放射性废料处置、输油及热力管道和热法地基处理等)的理论基础。经典土力学中有效应力原理描述了饱和土体在荷载作用下土骨架和孔隙流体之间的压力分布,但针对热-力耦合作用下土骨架及孔隙水之间的压力分布及其变化的研究罕有报道。该文从饱和土体宏观热固结响应出发,结合经典的有效应力原理,分析加热对土骨架和孔隙水的影响,推导考虑温度影响的有效应力和孔隙水压力表达式,建立考虑温度影响的饱和土有效应力原理,探讨不同位移边界和排水边界条件下有效应力和孔隙水压力的分布变化。结果发现:在热-力耦合作用下,土体的总应力、超静孔隙水压力和有效应力均随温度变化而变化;加热引起的温度应力和热孔压随时间变化而变化,影响土体的压缩性和强度,并进一步影响固结压缩过程和压缩量。该研究结果可为热固结理论推导及其他涉热岩土工程问题分析提供技术支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓岳保
毛伟赟
孔纲强
程冠初
关键词 有效应力原理温度有效应力孔隙水压力固结    
Abstract:Thermo-mechanical coupling is a key research topic in geotechnical engineering today for solving thermal geotechnical engineering problems, including underground energy engineering projects, radioactive waste disposal, oil transport and thermal pipelines, and thermal soft ground stabilization methods. The classical principle of the effective stress in soil mechanics describes the pressure distribution between the soil skeleton and the pore fluid for saturated soil. However, the pressure distribution and its changes between the soil skeleton and the pore water with thermal-mechanical coupling have rarely been reported. This study combines the macroscopic thermal response of the soil consolidation with the classical effective stress principle to analyze the influence of heating on the soil skeleton and the pore water to develop an effective stress and pore pressure prediction formula that includes the influence of temperature. The effective stress principle considering the temperature effect is used to analyze the effective stress and pore pressure distributions for various displacement and drainage boundary conditions. The results show that the thermo-mechanical coupling affects the total stress, the excess pore water pressure and the effective stress in the soil. The temperature stress and the thermal excess pore pressure caused by heating change with time and affect the soil consolidation and compression. The thermal stresses affect the soil stress state and indirectly affect the soil compressibility and strength. The research results can be used to develop thermal consolidation theory and to analyze problems related to thermal geotechnical engineering.
Key wordseffective stress principle    temperature    effective stress    pore water pressure    consolidation
收稿日期: 2020-02-20      出版日期: 2020-07-04
引用本文:   
邓岳保, 毛伟赟, 孔纲强, 程冠初. 考虑温度影响的饱和土有效应力原理[J]. 清华大学学报(自然科学版), 2020, 60(9): 726-732.
DENG Yuebao, MAO Weiyun, KONG Gangqiang, CHENG Guanchu. Effective stress principle in saturated soil with the effect of temperature. Journal of Tsinghua University(Science and Technology), 2020, 60(9): 726-732.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.22.013  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I9/726
  
  
  
  
  
  
  
  
[1] 李广信. 有效应力原理能够推翻吗[J]. 岩土工程界, 2007, 10(7):22-26. LI G X. Can the principle of effective stress be overthrew[J]. Geotechnical Engineering World, 2007, 10(7):22-26. (in Chinese)
[2] 陈津民. 三谈饱和土的有效应力:和李广信老师商榷[J]. 岩土工程界, 2009, 12(11):1-3. CHEN J M. A third discussion on effective stress principle of saturated soil with LI Guangxin[J]. Geotechnical Engineering World, 2009, 12(11):1-3. (in Chinese)
[3] 李广信. 关于有效应力原理的几个问题[J]. 岩土工程学报, 2011, 33(2):315-320. LI G X. Some problems about principle of effective stress[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(2):315-320. (in Chinese)
[4] 邵龙潭. 饱和土的土骨架应力方程[J]. 岩土工程学报, 2011, 33(12):1833-1837. SHAO L T. Skeleton stress equation for saturated soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12):1833-1837. (in Chinese)
[5] 路德春, 杜修力, 许成顺. 有效应力原理解析[J]. 岩土工程学报, 2013, 35(S1):146-151. LU D C, DU X L, XU C S. Analytical solutions to principle of effective stress[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S1):146-151. (in Chinese)
[6] 杜修力, 张佩, 许成顺, 等. 论有效应力原理与有效应力[J]. 岩土工程学报, 2018, 40(3):486-494. DU X L, ZHANG P, XU C S, et al. On principle of effective stress and effective stress[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3):486-494. (in Chinese)
[7] 李广信, 张丙印, 于玉贞. 土力学[M]. 2版. 北京:清华大学出版社, 2013. LI G X, ZHANG B Y, YU Y Z. Soil mechanics[M]. 2nd ed. Beijing:Tsinghua University Press, 2013. (in Chinese)
[8] 陶海冰. 热流固作用下软土静动力学特性及应用[D]. 杭州:浙江大学, 2015. TAO H B. The thermo-hydro-mechanical effect on static and dynamic properties of soft soil and its application[D]. Hangzhou:Zhejiang University, 2015. (in Chinese)
[9] 王宽君. 软土性状的温度效应[D]. 杭州:浙江大学, 2017.WANG K J. Temperature dependent behavior of soft soils[D]. Hangzhou:Zhejiang University, 2017. (in Chinese)
[10] CAMPANELLA R G, MITCHELL J K. Influence of temperature variations on soil behavior[J]. ASCE Journal of the Soil Mechanics and Foundations Division, 1968, 94(SM3):709-734.
[11] 程晓辉, 陈志辉. 纯主应力旋转条件下饱和黏土累积变形的热力学模型分析[J]. 岩土工程学报, 2015, 37(9):1581-1590. CHENG X H, CHEN Z H. Thermodynamic modeling of accumulated deformation of saturated clays under pure principal stress rotation[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9):1581-1590. (in Chinese)
[12] 陈卫忠, 龚哲, 于洪丹, 等. 黏土岩温度-渗流-应力耦合特性试验与本构模型研究进展[J]. 岩土力学, 2015, 36(5):1217-1238. CHEN W Z, GONG Z, YU H D, et al. Review of thermo-hydro-mechanical coupled tests and constitutive models of clays[J]. Rock and Soil Mechanics, 2015, 36(5):1217-1238. (in Chinese)
[13] LIU Q, DENG Y B, WANG T Y. One-dimensional nonlinear consolidation theory for soft ground considering secondary consolidation and the thermal effect[J]. Computers and Geotechnics, 2018, 104:22-28.
[14] LALOUI L, DI DONNA A. 能源地下结构[M]. 孔纲强, 译. 北京:中国建筑工业出版社, 2016. LALOUI L, DI DONNA A. Energy geostructures:Innovation in underground engineering[M]. KONG G Q, trans. Beijing:China Architecture and Building Press, 2016. (in Chinese)
[15] 中华人民共和国住房和城乡建设部. 桩基地热能利用技术标准:JGJ/T438-2018[S]. 北京:中国建筑工业出版社, 2018. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical standard for pile geothermal energy utilization:JGJ/T438-2018[S]. Beijing:China Architecture and Building Press, 2018. (in Chinese)
[16] ABUEL-NAGA H M, BERGADO D T, CHAIPRAKAIKEOW S. Innovative thermal technique for enhancing the performance of prefabricated vertical drain during the preloading process[J]. Geotextiles and Geomembranes, 2006, 24(6):359-370.
[17] BALDI G, HUECKEL T, PELLEGRINI R. Thermal volume changes of the mineral-water system in low-porosity clay soils[J]. Canadian Geotechnical Journal, 1988, 25(4):807-825.
[18] CUI Y J, SULTAN N, DELAGE P. A thermomechanical model for saturated clays[J]. Canadian Geotechnical Journal, 2000, 37(3):607-620.
[19] FRANÇOIS B, LALOUI L. ACMEG-TS:A constitutive model for unsaturated soils under non-isothermal conditions[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(16):1955-1988.
[20] ABUEL-NAGA H M, BERGADO D T, BOUAZZA A, et al. Volume change behaviour of saturated clays under drained heating conditions:Experimental results and constitutive modeling[J]. Canadian Geotechnical Journal, 2007, 44(8):942-956.
[21] HONG P Y, PEREIRA J M, TANG A M, et al. On some advanced thermo-mechanical models for saturated clays[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(17):2952-2971.
[22] COCCIA C J R, MCCARTNEY J S. Thermal volume change of poorly draining soils II:Model development and experimental validation[J]. Computers and Geotechnics, 2016, 80:16-25.
[23] 邓岳保, 王天园, 孔纲强. 考虑温度效应的饱和土地基固结理论[J]. 岩土工程学报, 2019, 41(10):1827-1835. DENG Y B, WANG T Y, KONG G Q. Consolidation theory for saturated ground considering temperature effect[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10):1827-1835. (in Chinese)
[1] 余舜尧, 徐小蓉, 邱流潮, 金峰. 堆石混凝土浇筑前后的非均质温度分布试验研究[J]. 清华大学学报(自然科学版), 2022, 62(9): 1388-1400.
[2] 陈飞宇, 付明, 申世飞, 李亚运, 郭贤. -10℃~5℃低温环境下体育锻炼人员人体热反应关键参数的实验研究[J]. 清华大学学报(自然科学版), 2022, 62(6): 1059-1066.
[3] 胡田飞, 王力. 寒区路基地源热泵系统冻胀防控效果[J]. 清华大学学报(自然科学版), 2022, 62(5): 871-880.
[4] 崔宏志, 黎海星, 包小华, 亓学栋, 史嘉鑫, 肖雄. 非饱和黏土地层中相变能源桩热性能测试[J]. 清华大学学报(自然科学版), 2022, 62(5): 881-890.
[5] 纪文杰, 杜衡, 朱颖心, 曹彬, 连之伟, 刘淑丽, 杨昌智. 对热环境评价指标“标准有效温度SET”的重新解读[J]. 清华大学学报(自然科学版), 2022, 62(2): 331-338.
[6] 林盼栋, 聂君锋, 刘美丹. BCC-Fe中1/ 2[111]刃型位错与[010]位错环相互作用的分子动力学研究[J]. 清华大学学报(自然科学版), 2022, 62(12): 2029-2034.
[7] 程世佳, 朱志明, 符平坡. 基于电弧图像的脉冲TIG焊电弧形态及特征温度演变规律[J]. 清华大学学报(自然科学版), 2021, 61(9): 994-1001.
[8] 宁泽宇, 林鹏, 彭浩洋, 汪志林, 陈文夫, 谭尧升, 周天刚. 混凝土实时温度数据移动平均分析方法及应用[J]. 清华大学学报(自然科学版), 2021, 61(7): 681-687.
[9] 杨宁, 刘毅, 乔雨, 谭尧升, 朱振泱. 大体积混凝土仓面智能喷雾控制模型[J]. 清华大学学报(自然科学版), 2021, 61(7): 724-729.
[10] 乔雨, 杨宁, 谭鹏, 彭浩洋, 吴卫, 周大建, 王潇楠. 大体积混凝土红外测温影响因素研究与工程应用[J]. 清华大学学报(自然科学版), 2021, 61(7): 730-737.
[11] 周华维, 赵春菊, 陈文夫, 周宜红, 谭尧升, 刘全, 潘志国, 游皓, 梁志鹏, 王放, 龚攀. 基于海量光纤测温数据的混凝土坝三维温度场分析系统[J]. 清华大学学报(自然科学版), 2021, 61(7): 738-746.
[12] 李晓伟, 吴莘馨, 张作义, 赵加清, 雒晓卫. 高温气冷堆示范工程螺旋管式直流蒸汽发生器工程验证试验[J]. 清华大学学报(自然科学版), 2021, 61(4): 329-337.
[13] 孙世妍, 张佑杰, 郑艳华, 夏冰. HTR-10超高温运行堆芯温度场分析[J]. 清华大学学报(自然科学版), 2021, 61(11): 1301-1307.
[14] 罗勇,邵珠峰,王立平,丘嘉豪,盛哲瑾. NL201HA数控卧式车床X轴热误差建模及补偿[J]. 清华大学学报(自然科学版), 2021, 61(1): 28-35.
[15] 程晓辉, 赵乃峰, 王浩, 张志超. 清华热力学岩土模型与能源地下结构有限元模拟[J]. 清华大学学报(自然科学版), 2020, 60(9): 707-714.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn