Energy management of servo press lines based on flywheel speed adaptive planning
PENG Fazhong1, ZHANG Peng2, WANG Liping1, SHAO Zhufeng1, YANG Di1, YANG Kuai1
1. Beijing Key Laboratory of Precision/Ultra-Precision Manufacturing Equipments and Control, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; 2. Jier Machine-Tool Group Co., Ltd., Jinan 250022, China
Abstract:The main drive motors in large servo press lines often draw megawatts of power with frequent acceleration and deceleration of the slider, which strongly affects the power grid and power usage. Thus, effective energy management is indispensable to ensure smooth, efficient operation of large servo press lines. This paper studies how to improve the energy management of large servo press lines using flywheel energy storage. A gradient project algorithm and B-spline speed planning are used to develop a half-period flywheel speed adaptive planning algorithm. This algorithm better optimizes the power usage by introducing an approximately sinusoidal disturbance which avoids sudden changes in the flywheel speed. Finally, the servo press line model is analyzed theoretically in Simulink. The simulation results show that the half-period adaptive flywheel speed planning algorithm significantly improves the incoming line power and bus voltage fluctuations as an effective method for energy management of large servo press lines.
彭发忠, 张朋, 王立平, 邵珠峰, 杨迪, 杨快. 基于飞轮转速自适应规划的伺服线能量管理[J]. 清华大学学报(自然科学版), 2020, 60(11): 927-933.
PENG Fazhong, ZHANG Peng, WANG Liping, SHAO Zhufeng, YANG Di, YANG Kuai. Energy management of servo press lines based on flywheel speed adaptive planning. Journal of Tsinghua University(Science and Technology), 2020, 60(11): 927-933.
[1] HALICIOGLU R, CANAN DULGER L, TOLGA BOZDANA A. Modeling, design, and implementation of a servo press for metal-forming application[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(5-8):2689-2700. [2] 戴绍祥, 孙立岩. 伺服冲压自动化生产工艺及装置浅析[J]. 锻压装备与制造技术, 2018, 53(1):15-18. DAI S X, SUN L Y. Analysis of automatic production process and device for servo stamping[J]. China Metalforming Equipment and Manufacturing Technology, 2018, 53(1):15-18. (in Chinese) [3] 常超, 史阳. 基于超级电容储能的直流风电机组协调控制[J]. 现代电力, 2017, 34(6):65-70. CHANG C, SHI Y. Coordinated control of DC wind power generator based on super capacitor energy storage[J]. Modern Electric Power, 2017, 34(6):65-70. (in Chinese) [4] 汤凡, 刘天琪, 李兴源. 用于风电场功率控制的飞轮储能系统仿真研究[J]. 电网与清洁能源, 2010, 26(2):63-68. TANG F, LIU T Q, LI X Y. Simulation of flywheel energy storage system for power control in wind farms[J]. Power System and Clean Energy, 2010, 26(2):63-68. (in Chinese) [5] 王业斌. 电动汽车电池能量管理策略研究[J]. 汽车文摘, 2019(5):58-62. WANG Y B. Research on battery energy management strategies for electric vehicles[J]. Automotive Digest, 2019(5):58-62. (in Chinese) [6] 周晓东, 郭为忠. 伺服压力机能量管理系统的研究[J]. 传动技术, 2018, 32(4):31-36. ZHOU X D, GUO W Z. Research on energy management system of servo press[J]. Drive System Technique, 2018, 32(4):31-36. (in Chinese) [7] 黄宇淇, 姜新建, 邱阿瑞. 飞轮储能能量回馈控制方法[J]. 清华大学学报(自然科学版), 2008, 48(7):1085-1088. HUANG Y Q, JIANG X J, QIU A R. Energy feedback control for flywheel energy storage system[J]. Journal of Tsinghua University (Science and Technology), 2008, 48(7):1085-1088. (in Chinese) [8] 李伟. 风力发电系统中飞轮储能装置的控制分析[J]. 中国设备工程, 2018(20):103-104. LI W. Control analysis of flywheel energy storage device in wind power generation system[J]. China Plant Engineering, 2018(20):103-104. (in Chinese) [9] 梁晓. 非最小相位系统的最小方差自适应控制[J]. 兵工自动化, 2004(6):54-55. LIANG X. Adaptive control of minimum square error for non-minimum phase system[J]. Ordnance Industry Automation, 2004(6):54-55. (in Chinese) [10] 任宏彬, 王丽梅. 基于极点配置的数控机床磁悬浮系统自适应同步控制[J]. 电气技术, 2010(2):16-19. REN H B, WANG L M. Adaptive synchronous control for suspension system of numerically controlled machine tool based on pole-placement[J]. Electrical Engineering, 2010(2):16-19. (in Chinese) [11] 刘丽影, 李雪松, 张建成. 飞轮储能系统发电运行控制技术的研究[J]. 华北电力技术, 2007(9):8-10. LIU L Y, LI X S, ZHANG J C. Research on flywheel energy storage system on generator controlling technology[J]. North China Electric Power, 2007(9):8-10. (in Chinese) [12] 王彬彬, 张飞, 王京. 基于递推最小二乘法的无模型自适应厚度控制[J]. 冶金自动化, 2015, 39(3):34-38. WANG B B, ZHANG F, WANG J. Model-free adaptive thickness control based on recursive least squares[J]. Metallurgical Industry Automation, 2015, 39(3):34-38. (in Chinese) [13] 宫立达, 李智敏. 基于单神经元自适应PID的普通车床智能控制研究[J]. 机电产品开发与创新, 2017, 30(3):108-109. GONG L D, LI Z M. Ordinary lathe intelligent control research based on single neuron adaptive PID[J]. Development and Innovation of Machinery and Electrical Products, 2017, 30(3):108-109. (in Chinese) [14] 陈运华, 高凤岐, 王广龙. 基于自适应模糊算法的无刷直流电机控制系统研究[J]. 微电机, 2012, 45(12):31-35. CHEN Y H, GAO F Q, WANG G L. Study on control cystem of crushless DC motor based on adaptive fuzzy algorithm[J]. Micromotors, 2012, 45(12):31-35. (in Chinese) [15] 侯忠生, 于百胜, 黄文虎. 非线性系统参数估计的投影算法[J]. 哈尔滨工业大学学报, 2000(3):25-28. HOU Z S, YU B S, HUANG W H. The projection algorithm for estimation of nonlinear system parameter[J]. Journal of Harbin Institute of Technology, 2000(3):25-28. (in Chinese)