Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (1): 1-10    DOI: 10.16511/j.cnki.qhdxxb.2020.22.020
  专题:汽车部件 本期目录 | 过刊浏览 | 高级检索 |
动力保持型三挡AMT动力学特性
李飞1,2,宋健1,*(),方圣楠1,宋海军1
1. 清华大学 汽车安全与节能国家重点实验室, 北京 100084
2. 陆军步兵学院石家庄校区 机械化步兵系, 石家庄 050083
Dynamic characteristics of a three-speed uninterrupted powertrain AMT
Fei LI1,2,Jian SONG1,*(),Shengnan FANG1,Haijun SONG1,Truong Sinh NGUYEN1
1. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
2. Department of Mechanized Infantry, Shijiazhuang School of Army Infantry Academy, Shijiazhuang 050083, China
全文: PDF(7456 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 

该文研究了纯电动客车动力保持型三挡电控机械式自动变速器(AMT)的动力学特性,该AMT可消除换挡时的动力中断。利用Lagrange方程,建立动力保持型三挡AMT动力学模型;采用MATLAB/Simulink,对安装动力保持型三挡AMT和未安装变速器的目标车型,作了加速、减速全过程仿真和动力性对比;通过模型得到换挡过程中离合器、制动器的力矩曲线,分析了驱动电机输入转矩和主减速器输出转矩;结合动力学方程,验证了换挡过程动力保持的可行性。结果表明:安装动力保持型三挡AMT,有助于改善纯电动客车的动力性,实现换挡时的动力保持。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李飞
宋健
方圣楠
宋海军
关键词 纯电动客车动力保持三挡自动变速器(AMT)动力学特性    
Abstract

This study analyzes the dynamic characteristics of a three-speed uninterrupted powertrain automatic mechanical transmission (AMT) for an electric bus. The AMT structure reduces the power interruption during shifting. A Lagrange equation is developed for the three-speed uninterrupted powertrain AMT that includes the target vehicle performance characteristics. The model is solved in MATLAB/Simulink to compare the performance characteristics of the target vehicle with this three-speed uninterrupted powertrain AMT and without a transmission with simulations of the entire acceleration and deceleration ranges of the target vehicle. The model predicts the clutch and brake torque curves during shifting and predicts the drive motor input torque and final output torque. The dynamic equations are also used to verify the feasibility of power recovery during shifting. The results show that the three-speed uninterrupted powertrain AMT improves the vehicle dynamics of electric buses and maintains power during shifting.

Key wordspure electric bus    uninterrupted powertrain    three-speed automatic mechanical transmission (AMT)    dynamic characteristics
收稿日期: 2020-03-27      出版日期: 2020-11-26
通讯作者: 宋健     E-mail: daesj@tsinghua.edu.cn
引用本文:   
李飞,宋健,方圣楠,宋海军. 动力保持型三挡AMT动力学特性[J]. 清华大学学报(自然科学版), 2021, 61(1): 1-10.
Fei LI,Jian SONG,Shengnan FANG,Haijun SONG,Truong Sinh NGUYEN. Dynamic characteristics of a three-speed uninterrupted powertrain AMT. Journal of Tsinghua University(Science and Technology), 2021, 61(1): 1-10.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.22.020  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I1/1
  动力保持型三挡AMT结构简图
1—驱动电机;2—输入轴;3—高低挡主动齿轮;4—太阳轮;5—制动器;6—齿圈;7—行星轮;8—三挡离合器;9—二挡离合器;10—二挡主动齿轮;11—二挡从动齿轮;12—主减速器主动齿轮;13—中间轴;14—主减速器从动齿轮及差速器;15—输出轴;16—高低挡从动齿轮;17—行星架
10.16511/j.cnki.qhdxxb.2020.22.020.T001

换挡执行机构工作状态

挡位 制动器 二挡离合器 三挡离合器
一挡 接合 分离 分离
二挡 分离 接合 分离
三挡 分离 分离 接合
  
换挡执行机构工作状态
  动力保持型三挡AMT二挡齿轮副受力情况
10.16511/j.cnki.qhdxxb.2020.22.020.T002

目标车型技术参数[15]

传动系统效率 0.95
轮胎动态滚动半径/m 0.506
滚动阻力系数 0.018
风阻系数 0.7
迎风面积/m2 7.33
(长/mm)×(宽/mm)×(高/mm) 11 985×2 500×3 250
质心高度/mm 750
试验质量/kg 15 000
满载质量/kg 17 500
  
目标车型技术参数[15]
10.16511/j.cnki.qhdxxb.2020.22.020.T003

目标车型驱动电机参数

额定转矩/(N·m) 880
峰值转矩/(N·m) 1 880
额定功率/kW 120
峰值功率/kW 150
额定转速/(r·min-1) 1 300
峰值转速/(r·min-1) 3 000
  
目标车型驱动电机参数
  动力保持型三挡AMT传动系统仿真模型
  安装动力保持型三挡AMT的整车模型
  坡度阻力示意图
10.16511/j.cnki.qhdxxb.2020.22.020.T004

原厂主减速器和动力保持型三挡AMT的参数对比

原厂主减速器 动力保持型三挡AMT
主减速比 挡位 变速器传动比 主减速比
一挡 2.745 1
6.166 二挡 1.7 4.133
三挡 1
  
原厂主减速器和动力保持型三挡AMT的参数对比
  目标车型爬坡度对比   目标车型最高车速的对比   目标车型加速时间的对比
10.16511/j.cnki.qhdxxb.2020.22.020.T005

安装动力保持型三挡AMT前后动力性指标对比

最大爬坡度/% 最高车速/(km·h-1) 0~50 km/h的加速时间/s
未安装变速器 13 92 15
安装三挡AMT 24 100 13
改善比例/% 85 8.7 13
  
安装动力保持型三挡AMT前后动力性指标对比
10.16511/j.cnki.qhdxxb.2020.22.020.T006

动力保持型三挡AMT换挡点

挡位切换 升挡点/(km·h-1) 降挡点/(km·h-1)
一挡、二挡 30 25
二挡、三挡 60 55
  
动力保持型三挡AMT换挡点
  加减速全过程挡位及各部件转速、转矩变化   一挡升二挡时换挡执行机构力矩曲线   驱动电机输入转矩与主减速器输出转矩曲线
1 宋健,李飞,李锐,等.一种复合轮系动力保持型三挡自动变速器: ZL201510228009.2[P]. 2015-05-07.
1 SONG J, LI F, LI R, et al. Three-speed uninterrupted powertrain automatic mechanical transmission based on composite wheel train: ZL201510228009.2[P]. 2015-05-07. (in Chinese)
3 周晶晶.纯电动汽车两挡自动变速器试验与仿真[D].长沙:湖南大学, 2014.
3 ZHOU J J. Gearshift dynamics simulation in two-speed AMT of pure electric vehicle[D]. Changsha: Hunan University, 2014. (in Chinese)
4 吉毅.纯电动汽车用AMT参数设计及换挡控制策略优化[D].重庆:重庆大学, 2014.
4 JI Y. Parameter design and shifting control strategy optimization of AMT for pure electric vehicle[D]. Chongqing: Chongqing University, 2014. (in Chinese)
5 朱虹燃.纯电动汽车两挡自动变速器的研究开发[D].青岛:青岛大学, 2014.
5 ZHU H R. Design of two-speed AMT for pure electric vehicle[D]. Qingdao: Qingdao University, 2014. (in Chinese)
6 LIANG Q , GAO B Z , CHEN H . Gear shifting control for pure electric vehicle with inverse-AMT[J]. Applied Mechanics and Materials, 2012. 190-191, 1286- 1289.
doi: 10.4028/www.scientific.net/AMM.190-191.1286
7 FANG S N , SONG J , SONG H J , et al. Design and control of a novel two-speed uninterrupted mechanical transmission for electric vehicles[J]. Mechanical Systems and Signal Processing, 2016. 75, 473- 493.
doi: 10.1016/j.ymssp.2015.07.006
9 孙少华.纯电动客车机械式自动变速器换挡综合控制技术研究[D].长春:吉林大学, 2014.
9 SUN S H. Research on shift integrated control technology for automated manual transmission in pure electric bus[D]. Changchun: Jilin University, 2014. (in Chinese)
10 XI J Q, XIONG G M, ZHANG Y. Application of automatic manual transmission technology in pure electric bus[C]//Proceedings of 2008 IEEE Vehicle Power and Propulsion Conference. Harbin, China, 2008.
11 MOUSAVI M S R, PAKNIYAT A, BOULET B. Dynamic modeling and controller design for a seamless two-speed transmission for electric vehicles[C]//Proceedings of 2014 IEEE Conference on Control Applications. Juan Les Antibes, France, 2014: 635-640.
12 SORNIOTTI A, BOSCOLO M, TURNER A, et al. Optimization of a multi-speed electric axle as a function of the electric motor properties[C]//Proceedings of 2010 IEEE Vehicle Power and Propulsion Conference. Lille, France, 2010: 1-6.
13 HONG S , SON H , LEE S , et al. Shift control of a dry-type two-speed dual-clutch transmission for an electric vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2016. 230 (3): 308- 321.
doi: 10.1177/0954407015585686
14 GUO L L , GAO B Z , CHEN H . Online shift schedule optimization of 2-speed electric vehicle using moving horizon strategy[J]. IEEE/ASME Transactions on Mechatronics, 2016. 21 (6): 2858- 2869.
doi: 10.1109/TMECH.2016.2586503
17 宋勇道.基于两档双离合器自动变速器的纯电动汽车驱动与换档控制技术研究[D].长春:吉林大学, 2013.
17 SONG Y D. Research on drive and shift control technology for electric vehicle with two-speed dual clutch transmission[D]. Changchun: Jilin University, 2013. (in Chinese)
[1] 李飞, 宋健, 方圣楠, 卢正弘, NGUYEN Truong Sinh. 动力保持型AMT带式制动器的动态力矩特性[J]. 清华大学学报(自然科学版), 2020, 60(2): 124-131.
[2] 赵彤, 郭俊杰, 吕玉红. 预紧力与非线性作用的螺栓结合部动力学特性[J]. 清华大学学报(自然科学版), 2019, 59(9): 772-779.
[3] 姚一娜, 李聪, 陶振翔, 杨锐. 液滴碰撞倾斜壁面的动力学特性[J]. 清华大学学报(自然科学版), 2019, 59(2): 129-134.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn