Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (1): 28-35    DOI: 10.16511/j.cnki.qhdxxb.2020.22.022
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
NL201HA数控卧式车床X轴热误差建模及补偿
罗勇1,2,邵珠峰1,*(),王立平1,2,丘嘉豪1,盛哲瑾1
1. 清华大学 机械工程系, 摩擦学国家重点实验室, 精密超精密制造装备及控制北京市重点实验室, 北京 100084
2. 电子科技大学 机械与电气工程学院, 成都 611731
X-axis thermal error modeling and compensation for an NL201HA CNC horizontal lathe
Yong LUO1,2,Zhufeng SHAO1,*(),Liping WANG1,2,Jiahao QIU1,Zhejin SHENG1
1. Beijing Key Laboratory of Precision/Ultra-Precision Manufacturing Equipments and Control, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
2. Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
全文: PDF(5278 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 

该文分析了数控卧式车床热误差对机床加工精度的影响。利用红外热像仪、位移传感器和温度传感器记录热误差数据,建立热误差模型和热误差补偿系统。利用红外热图像和相关分析,对关键测温点的位置进行了优化。然后,建立了车床主轴径向(X方向)热误差的线性回归模型。实验结果表明:线性回归模型是鲁棒的,适用于机床热误差建模。利用线性回归模型开发了基于Siemens828D型数控系统及S7-300PLC(可编程逻辑控制器)的热误差补偿系统。检测结果表明:轴径向热误差由原来的10 μm减少到5 μm以内,精度提高50%以上。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗勇
邵珠峰
王立平
丘嘉豪
盛哲瑾
关键词 数控卧式车床温度测点热误差建模热误差补偿    
Abstract

The influence of thermal error on machine tool processing accuracy was analyzed for a computer numerical control (CNC) horizontal lathe. Thermal error data was recorded using an infrared thermal imager, a displacement sensor and a temperature sensor to establish a thermal error model and a thermal error compensation system. Infrared thermal images and correlation analyses were used to optimize the locations of key temperature measurement points. Then, a linear regression thermal error model was developed for the main lathe axis in the radial direction (X direction). Tests show that the linear regression model is robust and suitable for thermal error modelling of the lathe. The linear regression model was then used to develop a thermal error compensation system based on a Siemens 828D CNC system and an S7-300PLC (programmable logic controller). Tests show that the radial thermal error of the shaft is reduced from the original 10 μm to less than 5 μm with the accuracy improved by more than 50%.

Key wordscomputer numerical control (CNC) horizontal lathe    temperature measuring point    thermal error modeling    thermal error compensation
收稿日期: 2020-04-22      出版日期: 2020-11-26
通讯作者: 邵珠峰     E-mail: shaozf@tsinghua.edu.cn
引用本文:   
罗勇,邵珠峰,王立平,丘嘉豪,盛哲瑾. NL201HA数控卧式车床X轴热误差建模及补偿[J]. 清华大学学报(自然科学版), 2021, 61(1): 28-35.
Yong LUO,Zhufeng SHAO,Liping WANG,Jiahao QIU,Zhejin SHENG. X-axis thermal error modeling and compensation for an NL201HA CNC horizontal lathe. Journal of Tsinghua University(Science and Technology), 2021, 61(1): 28-35.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.22.022  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I1/28
  NL201HA型数控车床
10.16511/j.cnki.qhdxxb.2020.22.022.T001

前期实验测点方案

数据通道 测量的量及其单位
ch1 位移传感器到工件的距离X/mm
ch2
ch3 床身温度/℃
ch4 X轴螺母座温度/℃
ch5
ch6 主轴箱前端温度/℃
ch7 室温/℃
  
前期实验测点方案
  X轴红外热图像(℃)
  主轴箱红外热图像(℃)
10.16511/j.cnki.qhdxxb.2020.22.022.T002

最终测点布置

数据通道 测量的量及其单位
ch1 位移传感器到工件的距离X/mm
ch2
ch3 床身温度/℃
ch4 X轴螺母座温度/℃
ch5 X轴电机座温度/℃
ch6 主轴箱前端温度/℃
ch7 室温/℃
  
最终测点布置
10.16511/j.cnki.qhdxxb.2020.22.022.T003

热误差建模阶段实验工况

组别 工况设定
1 主轴4 000 r/min,X轴20 m/min快移
2 X轴20 m/min快移
3 主轴4 000 r/min,X轴20 m/min快移
4 上午:主轴4 000 r/min;下午:X轴20 m/min快移
5 上午:主轴3 000 r/min,X轴16 m/min快移
下午:主轴4 000 r/min,X轴20 m/min快移
  
热误差建模阶段实验工况
10.16511/j.cnki.qhdxxb.2020.22.022.T004

各测温点间的相关系数

组别 3-4 3-5 3-6 3-7 4-5 4-6 4-7 5-6 5-7 6-7
1 0.828 4 0.549 4 0.767 4 0.764 1 0.916 6 0.964 5 0.765 6 0.912 7 0.830 4 0.830 5
2 0.561 8 0.871 2 0.628 5 0.146 2 0.842 4 0.960 5 0.308 2 0.915 9 0.311 3 0.442 4
3 0.333 9 0.765 9 0.982 5 0.542 2 0.773 8 0.278 6 0.260 8 0.697 1 0.456 3 0.557 8
4 0.407 9 0.836 9 0.347 9 -0.282 7 0.743 2 0.939 5 0.100 5 0.775 5 0.023 4 0.352 2
5 -0.259 2 0.608 7 0.815 2 0.805 4 0.896 0 -0.421 3 0.034 4 0.236 0 0.644 6 0.629 0
  
各测温点间的相关系数
10.16511/j.cnki.qhdxxb.2020.22.022.T005

任意3个测点组合与热误差的R2

组别 3-4-5 3-4-6 3-4-7 3-5-6 3-5-7 3-6-7 4-5-6 4-5-7 4-6-7 5-6-7
1 0.948 9 0.972 0 0.827 9 0.974 9 0.929 2 0.958 0 0.911 5 0.322 3 0.669 3 0.808 5
2 0.919 8 0.972 2 0.892 3 0.959 7 0.948 7 0.973 9 0.936 9 0.696 8 0.501 7 0.897 9
3 0.907 2 0.768 2 0.720 9 0.903 2 0.903 1 0.238 3 0.890 6 0.598 9 0.749 6 0.872 8
4 0.924 9 0.977 4 0.884 4 0.952 2 0.941 1 0.961 2 0.962 5 0.745 8 0.653 6 0.899 6
5 0.546 0 0.671 0 0.494 5 0.925 4 0.539 4 0.319 1 0.418 5 0.474 0 0.545 9 0.259 2
  
任意3个测点组合与热误差的R2
10.16511/j.cnki.qhdxxb.2020.22.022.T006

任意4个测点组合与热误差的R2

组别 3-4-5-6 3-4-5-7 3-4-6-7 3-5-6-7 4-5-6-7
1 0.977 9 0.969 7 0.972 6 0.978 0 0.935 6
2 0.973 6 0.869 6 0.877 4 0.976 9 0.840 8
3 0.938 1 0.907 4 0.768 8 0.923 3 0.890 7
4 0.977 7 0.961 1 0.977 5 0.970 3 0.967 6
5 0.928 8 0.546 5 0.676 8 0.932 4 0.546 8
  
任意4个测点组合与热误差的R2
  建模组模型拟合结果   验证组模型拟合结果   基于Siemens828D型数控系统的热误差补偿流程图   实验补偿后热误差值
1 BRYAN J . International status of thermal error research (1990)[J]. CIRP Annals, 1990. 39 (2): 645- 656.
doi: 10.1016/S0007-8506(07)63001-7
2 RAMESH R , MANNAN M A , POO A N . Error compensation in machine tools-A review:Part Ⅱ:Thermal errors[J]. International Journal of Machine Tools and Manufacture, 2000. 40 (9): 1257- 1284.
doi: 10.1016/S0890-6955(00)00010-9
3 AHN K G , CHO D W . In-process modelling and estimation of thermally induced errors of a machine tool during cutting[J]. The International Journal of Advanced Manufacturing Technology, 1999. 15 (4): 299- 304.
doi: 10.1007/s001700050070
4 LI Y , ZHAO W H , LAN S H , et al. A review on spindle thermal error compensation in machine tools[J]. International Journal of Machine Tools and Manufacture, 2015. 95, 20- 38.
doi: 10.1016/j.ijmachtools.2015.04.008
6 CAMERA A , FAVARATO M , MILITANO L , et al. Analysis of the thermal behavior of a machine tool table using the finite element method[J]. Annals of the CIRP, 1976. 25 (1): 297- 300.
7 SPUR G , HOFFMANN E , PALUNCIC Z , et al. Thermal behaviour optimization of machine tools[J]. CIRP Annals, 1988. 37 (1): 401- 405.
doi: 10.1016/S0007-8506(07)61664-3
8 LIU T , GAO W G , ZHANG D W , et al. Analytical modeling for thermal errors of motorized spindle unit[J]. International Journal of Machine Tools and Manufacture, 2017. 112, 53- 70.
doi: 10.1016/j.ijmachtools.2016.09.008
9 LO C H , YUAN J X , NI J . Optimal temperature variable selection by grouping approach for thermal error modeling and compensation[J]. International Journal of Machine Tools and Manufacture, 1999. 39 (9): 1383- 1396.
doi: 10.1016/S0890-6955(99)00009-7
10 LI D X , FENG P F , ZHANG J F , et al. Calculation method of convective heat transfer coefficients for thermal simulation of a spindle system based on RBF neural network[J]. The International Journal of Advanced Manufacturing Technology, 2014. 70 (5-8): 1445- 1454.
doi: 10.1007/s00170-013-5386-y
11 RAMESH R , MANNAN M A , POO A N . Support vector machines model for classification of thermal error in machine tools[J]. The International Journal of Advanced Manufacturing Technology, 2002. 20 (2): 114- 120.
doi: 10.1007/s001700200132
12 LI S H , ZHANG Y Q , ZHANG G X . A study of pre-compensation for thermal errors of NC machine tools[J]. International Journal of Machine Tools and Manufacture, 1997. 37 (12): 1715- 1719.
doi: 10.1016/S0890-6955(97)00032-1
13 YANG H , NI J . Dynamic modeling for machine tool thermal error compensation[J]. Journal of Manufacturing Science and Engineering, 2003. 125 (2): 245- 254.
doi: 10.1115/1.1557296
15 ZHANG Y , YANG J G , JIANG H . Machine tool thermal error modeling and prediction by grey neural network[J]. The International Journal of Advanced Manufacturing Technology, 2012. 59 (9-12): 1065- 1072.
doi: 10.1007/s00170-011-3564-3
16 崔岗卫.重型数控落地铣镗床误差建模及补偿技术研究[D].哈尔滨:哈尔滨工业大学, 2012.
16 CUI G W. Research on error modeling and compensation for heavy-duty CNC floor-typed boring and milling machine tool[D]. Harbin: Harbin University of Technology, 2012. (in Chinese)
17 LI Z H , YANG J G , FAN K G , et al. Integrated geometric and thermal error modeling and compensation for vertical machining centers[J]. The International Journal of Advanced Manufacturing Technology, 2015. 76 (5-8): 1139- 1150.
doi: 10.1007/s00170-014-6336-z
18 ZHANG D X, LIU X L, SHI H M, et al. Identification of position of key thermal susceptible points for thermal error compensation of machine tool by neural network[C]//Proceedings of SPIE International Conference on Intelligent Manufacturing. Wuhan, China, 1995: 468-472.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn