Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (1): 36-41    DOI: 10.16511/j.cnki.qhdxxb.2020.22.023
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
电极极性和保护气体种类对TIG电弧辅助MIG焊引弧性能的影响
汤莹莹,朱志明*(),符平坡,张天一
清华大学 机械工程系, 先进成形制造教育部重点实验室, 北京 100084
Effects of electrode polarity and shielding gas type on arc ignition of TIG arc-assisted MIG welding
Yingying TANG,Zhiming ZHU*(),Pingpo FU,Tianyi ZHANG
Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(8124 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 

通过电信号-高速摄像采集系统记录钨极惰性气体保护-熔化极惰性气体保护(TIG-MIG)复合焊引弧过程中的电压-电流信号和电弧图像,研究了TIG焊和MIG焊的电极极性接法、MIG焊保护气体种类对TIG电弧辅助MIG焊引弧性能的影响。试验结果表明:MIG焊采用直流反接是TIG电弧辅助MIG焊依靠细长放电通道实现非接触引弧的必要条件,TIG焊采用直流正接还是反接仅影响TIG电弧辅助MIG焊实现非接触引弧的容易度;MIG焊非接触引弧是由于TIG电弧外层的电子向MIG焊丝末端移动,在途中与周围的保护气体发生频繁碰撞并使之部分电离,产生大量正负带电粒子,导致间隙的电导率显著提高,以致间隙在低电压下发生了电击穿;相比Ar+1% O2(体积分数)和Ar+15% CO2(体积分数),MIG焊在纯Ar中实现非接触引弧更容易。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汤莹莹
朱志明
符平坡
张天一
关键词 钨极惰性气体保护-熔化极惰性气体保护(TIG-MIG)复合焊MIG焊引弧电极极性保护气体种类气体放电    
Abstract

The voltage and current signals and arc images during arc ignition of tungsten inert gas - metal inert gas (TIG-MIG) hybrid welding were recorded using a data acquisition system and a high-speed camera. The data was used to study the effects of electrode polarity of the TIG welding and the MIG welding and the shielding gas type for the MIG welding on the arc ignition of TIG arc-assisted MIG welding. MIG welding with direct current electrode positive is necessary for TIG arc-assisted MIG welding to achieve non-contact arc ignition through an elongated discharge channel. TIG welding with direct current electrode negative or positive only affects the ease of non-contact arc ignition for TIG arc-assisted MIG welding. MIG welding achieves non-contact arc ignition because the electrons in the outer layer of the TIG arc move towards the end of the MIG welding wire where they collide with neutral particles in the surrounding shielding gas which ionizes some of them and generates many positively and negatively charged particles. The gap conductivity then significantly increases and the gap breaks down at low voltage. MIG welding with pure Ar shielding gas more easily achieves non-contact arc ignition than with Ar + 1% O2 (volume fraction) or Ar + 15% CO2 (volume fraction).

Key wordstungsten inert gas - metal inert gas (TIG-MIG) hybrid welding    arc ignition of MIG welding    electrode polarity    shielding gas type    gas discharge
收稿日期: 2020-05-02      出版日期: 2020-11-26
通讯作者: 朱志明     E-mail: zzmdme@tsinghua.edu.cn
引用本文:   
汤莹莹,朱志明,符平坡,张天一. 电极极性和保护气体种类对TIG电弧辅助MIG焊引弧性能的影响[J]. 清华大学学报(自然科学版), 2021, 61(1): 36-41.
Yingying TANG,Zhiming ZHU,Pingpo FU,Tianyi ZHANG. Effects of electrode polarity and shielding gas type on arc ignition of TIG arc-assisted MIG welding. Journal of Tsinghua University(Science and Technology), 2021, 61(1): 36-41.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.22.023  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I1/36
  TIG-MIG复合焊接示意图
10.16511/j.cnki.qhdxxb.2020.22.023.T001

TIG焊接参数

焊接电流IT/A 钨-丝间距d/mm 焊枪倾角θT/(°) 钨极高度hT/mm 保护气流量qT/(L·min-1)
70 6 0 5 6
  
TIG焊接参数
10.16511/j.cnki.qhdxxb.2020.22.023.T002

MIG焊接参数

电弧电压UM/V 送丝速度vf/(m·min-1) 焊枪倾角θM/(°) 喷嘴高度hM/mm 保护气流量qM/(L·min-1)
26.4 3.5 45 18 15
  
MIG焊接参数
  两焊枪相对位置实物图
10.16511/j.cnki.qhdxxb.2020.22.023.T003

TIG-MIG复合焊的电极极性接法

电极极性接法
(a) (b) (c) (d)
TIG焊 DCEN DCEP DCEN DCEP
MIG焊 DCEP DCEP DCEN DCEN
  
TIG-MIG复合焊的电极极性接法
  4种电极极性接法下TIG电弧辅助MIG焊引弧过程的典型电弧图像
  MIG焊的电压变化曲线
  MIG焊引弧瞬间的电弧图像
   4种电极极性接法下TIG-MIG复合焊电极空间的电位关系
  不同保护气体下TIG电弧辅助MIG焊引弧瞬间4次重复试验的电弧图像
10.16511/j.cnki.qhdxxb.2020.22.023.T004

不同气体的电热物理性能[13]

气体类型 比热容/(J·cm-3·K-1) 热导率/(10-3 J·cm-1·s-1·K-1) 分解度 电离势Ui/V 电弧电场强度比
(空气=1)
Ar 0.52 0.158 不分解 15.7 0.5
O2 0.91 2.470 0.97 13.2 2.0
CO2 0.82 0.159 0.99 14.4 1.5

  注:比热容和热导率是温度在273 K时的取值,分解度是温度在5 000 K时的取值。

  
不同气体的电热物理性能[13]
3 CHEN J , ZONG R , WU C , et al. Influence of low current auxiliary TIG arc on high speed TIG-MIG hybrid welding[J]. Journal of Materials Processing Technology, 2017. 243, 131- 142.
doi: 10.1016/j.jmatprotec.2016.12.012
4 KANEMARU S , SASAKI T , SATO T , et al. Study for TIG-MIG hybrid welding process[J]. Welding in the World, 2014. 58 (1): 11- 18.
doi: 10.1007/s40194-013-0090-y
6 SCHNEIDER C F , LISBOA C P , SILVA R A , et al. Optimizing the parameters of TIG-MIG/MAG hybrid welding on the geometry of bead welding using the Taguchi method[J]. Journal of Manufacturing and Materials Processing, 2017. 1 (2): 1- 17.
7 DING M , LIU S S , ZHENG Y , et al. TIG-MIG hybrid welding of ferritic stainless steels and magnesium alloys with Cu interlayer of different thickness[J]. Materials & Design, 2015. 88, 375- 383.
8 LIANG Y , HU S , SHEN J , et al. Geometrical and microstructural characteristics of the TIG-CMT hybrid welding in 6061 aluminum alloy cladding[J]. Journal of Materials Processing Technology, 2017. 239, 18- 30.
doi: 10.1016/j.jmatprotec.2016.08.005
11 TANG Y Y , ZHU Z M , YANG Z Y , et al. TIG arc-induced non-contact MIG arc ignition[J]. Journal of Materials Processing Technology, 2018. 257 (7): 45- 53.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn