Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (3): 248-253    DOI: 10.16511/j.cnki.qhdxxb.2020.22.024
  电子工程 本期目录 | 过刊浏览 | 高级检索 |
基于匹配滤波器和度量学习的脑电信号分类
刘宏马, 王生进
清华大学 电子工程系, 智能技术与系统国家重点实验室, 信息技术国家实验室, 北京 100084
EEG classification based on a match filter and metric learning
LIU Hongma, WANG Shengjin
National Laboratory for Information Science and Technology, State Key Laboratory of Intelligent Technology and Systems, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(1637 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 脑电信号识别和脑机接口技术是人机交互领域的热点问题。当前脑电信号分类方法模型复杂,难以实际应用。该文提出基于匹配滤波器的脑电信号分类框架:根据脑电信号特点和假设检验建立生成式模型,并基于Gauss噪声假设推导出一个简单的线性判定算子;利用度量学习方法估计主信号分量和最优协方差矩阵,进一步增强分类器的鉴别力。实验结果表明:所推导出的线性判定算子分类精度和计算复杂度都优于其他算法,能够满足实际应用需求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘宏马
王生进
关键词 脑机接口匹配滤波器度量学习P300打字机    
Abstract:Brain signal analyses and brain-computer interfaces are key topics in human-computer interaction research. Current electroencephalography (EEG) signal classification methods are complicated and difficult to apply in practice. This paper presents a match filter based classification framework using a hypothesis testing model and a match filter which is a linear function of the signal due to the Gaussian noise assumption. A metric learning based method is then used to estimate the principle component and the optimal covariance matrix to further enhance the model discrimination. The results show that this method provides better recognition accuracy with less computational complexity than other algorithms which makes it more practical.
Key wordsbrain-computer interface    match filter    metric learning    P300 speller
收稿日期: 2020-04-30      出版日期: 2021-03-06
基金资助:王生进,教授,E-mail:wgsgj@tsinghua.edu.cn
引用本文:   
刘宏马, 王生进. 基于匹配滤波器和度量学习的脑电信号分类[J]. 清华大学学报(自然科学版), 2021, 61(3): 248-253.
LIU Hongma, WANG Shengjin. EEG classification based on a match filter and metric learning. Journal of Tsinghua University(Science and Technology), 2021, 61(3): 248-253.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.22.024  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I3/248
  
  
  
  
  
[1] BASHASHATI A, FATOURECHI F, WARD R K, et al. A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals[J]. Journal of Neural Engineering, 2007, 4(2):R32-R57.
[2] LUCK S J. An introduction to the event-related potential technique[M]. 2nd ed. Cambridge, USA:Bradford Books, 2014.
[3] KAMP S M, MURPHY A R, DONCHIN E. The component structure of event-related potentials in the P300 speller paradigm[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21(6):897-907.
[4] FARWELL L A, DONCHIN E. Talking off the top of your head:Toward a mental prosthesis utilizing event-related brain potentials[J]. Electroencephalography and Clinical Neurophysiology, 1988, 70(6):510-523.
[5] XU N, GAO X R, HONG B, et al. BCI competition 2003-data set Ⅱb:Enhancing P300 wave detection using ICA-based subspace projections for BCI applications[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(6):1067-1072.
[6] QIAO X Y, LI D Z, DONG Y E. P300 feature extraction based on parametric model and FastICA algorithm[C]//Fifth International Conference on Natural Computation. Tianjin, China, 2009:585-589.
[7] BURKE D P, KELLY S P, DE CHAZAL P, et al. A parametric feature extraction and classification strategy for brain-computer interfacing[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2005, 13(1):12-17.
[8] MVLLER-GERKING J, PFURTSCHELLER G, FLYVBJERG H. Designing optimal spatial filters for single-trial EEG classification in a movement task[J]. Clinical Neurophysiology, 1999, 110(5):787-798.
[9] SHI L C, LI Y, SUN R H, et al. A sparse common spatial pattern algorithm for brain-computer interface[C]//International Conference on Neural Information Processing. Berlin, Germany:Springer, 2011:725-733.
[10] KAPER M, MEINICKE P, GROSSEKATHOEFER U, et al. BCI competition 2003-data set Ⅱb:Support vector machines for the P300 speller paradigm[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(6):1073-1076.
[11] LIANG N Y, BOUGRAIN L. Averaging techniques for single-trial analysis of oddball event-related potentials[C]//Proceeding of Fourth International BCI Workshop and Training Course. Graz, Austria, 2008:44-49.
[12] RAKOTOMAMONJY A, GUIGUE V. BCI competition Ⅲ:Dataset Ⅱ-ensemble of SVMs for BCI P300 speller[J]. IEEE Transactions on Biomedical Engineering, 2008, 55(3):1147-1154.
[13] CECOTTI H, GRASER A. Convolutional neural networks for P300 detection with application to brain-computer interfaces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(3):433-445.
[14] LIU M F, WU W, GU Z H, et al. Deep learning based on batch normalization for P300 signal detection[J]. Neurocomputing, 2018, 275:288-297.
[15] DITTHAPRON A, BANLUESOMBATKUL N, KETRAT S, et al. Universal joint feature extraction for P300 EEG classification using multi-task autoencoder[J]. IEEE Access, 2019, 7:68415-68428.
[16] SHIN Y, LEE S, AHN M, et al. Performance increase by using an EEG sparse representation based classification method[C]//International Symposium on Noninvasive Functional Source Imaging of the Brain and Heart and the 8th International Conference on Bioelectromagnetism. Banff, Canada, 2011:93-97.
[17] LI Z M, ZHANG Z, QIN J, et al. Discriminative Fisher embedding dictionary learning algorithm for object recognition[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 31(3):786-800.
[18] ZHANG Z, JIANG W M, QIN J, et al. Jointly learning structured analysis discriminative dictionary and analysis multiclass classifier[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 29(8):3798-3814.
[19] BLANKERTZ B, MULLER K R, KRUSIENSKI D J, et al. The BCI competition Ⅲ:Validating alternative approaches to actual BCI problems[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2006, 14(2):153-159.
[20] KAY S M. Fundamentals of statistical signal processing[M]. Englewood Cliffs, USA:Prentice Hall, 1993.
[1] 王伟明, 李冰, 李路明. 有源植入式医疗器械可靠性研究的特点和进展[J]. 清华大学学报(自然科学版), 2023, 63(5): 792-801.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn