Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (9): 906-912    DOI: 10.16511/j.cnki.qhdxxb.2020.22.028
  智能汽车 本期目录 | 过刊浏览 | 高级检索 |
基于最优前轮侧偏力的智能汽车LQR横向控制
陈亮1, 秦兆博1, 孔伟伟2, 陈鑫1
1. 湖南大学 汽车车身先进设计制造国家重点实验室, 长沙 410082;
2. 清华大学 汽车安全与节能国家重点实验室, 北京 100084
Lateral control using LQR for intelligent vehicles based on the optimal front-tire lateral force
CHEN Liang1, QIN Zhaobo1, KONG Weiwei2, CHEN Xin1
1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China;
2. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
全文: PDF(1422 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 为提高智能汽车在大曲率高速工况下的车辆横向稳定性和跟踪精度,该文提出了一种基于最优前轮侧偏力的智能汽车线性二次型调节器(LQR)路径跟踪横向控制方法。通过构建基于“前馈+反馈”的LQR控制器对期望前轮侧偏力进行实时在线求解并使跟踪误差收敛,最终通过刷子轮胎模型将控制量转化为期望前轮转角。该方法有效地保持了车辆模型与轮胎模型原有的非线性特性。基于PreScan搭建了仿真模型,结果表明:与应用线性轮胎模型的LQR控制器相比,所提出的控制方法在降低路径跟踪误差的同时,还能有效提升车辆的横向稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈亮
秦兆博
孔伟伟
陈鑫
关键词 智能汽车路径跟踪控制车辆横向稳定性线性二次型调节器(LQR)    
Abstract:A lateral control method for intelligent vehicles is developed based on the optimal front-tire lateral force to improve the lateral stability and the path tracking accuracy of intelligent vehicles going around large curvature turns. A linear quadratic regulator (LQR) controller using feedforward and feedback control is used to determine the desired front-tire lateral force in real time to reduce the tracking error. The control input is then converted into the desired steering angle based on the brush tire model. This method properly retains the nonlinear characteristics of the vehicle and tire models. The LQR controller is verified via simulations on PreScan. The results show that this LQR controller not only reduces the path tracking error relative to the general LQR method, but also ensures lateral stability of the vehicle.
Key wordsintelligent vehicle    path tracking control    vehicle lateral stability    linear quadratic regulator (LQR)
收稿日期: 2020-06-15      出版日期: 2021-08-21
基金资助:国家自然科学基金创新研究群体项目(51621004)
通讯作者: 秦兆博,副研究员,E-mail:qzb@hnu.edu.cn     E-mail: qzb@hnu.edu.cn
引用本文:   
陈亮, 秦兆博, 孔伟伟, 陈鑫. 基于最优前轮侧偏力的智能汽车LQR横向控制[J]. 清华大学学报(自然科学版), 2021, 61(9): 906-912.
CHEN Liang, QIN Zhaobo, KONG Weiwei, CHEN Xin. Lateral control using LQR for intelligent vehicles based on the optimal front-tire lateral force. Journal of Tsinghua University(Science and Technology), 2021, 61(9): 906-912.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.22.028  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I9/906
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 吴艳, 王丽芳, 李芳. 基于滑模自抗扰的智能车路径跟踪控制[J]. 控制与决策, 2019, 34(10): 2150-2156. WU Y, WANG L F, LI F. Intelligent vehicle path following control based on sliding mode active disturbance rejection control [J]. Control and Decision, 2019, 34(10): 2150-2156. (in Chinese)
[2] 陈特, 陈龙, 徐兴, 等. 分布式驱动无人车路径跟踪与稳定性协调控制[J]. 汽车工程, 2019, 41(10): 1109-1116. CHEN T, CHEN L, XU X, et al. Integrated control of unmanned distributed driven vehicles path tracking and stability [J]. Automotive Engineering, 2019, 41(10): 1109-1116. (in Chinese)
[3] 林棻, 倪兰青, 赵又群, 等. 考虑横向稳定性的智能车辆路径跟踪控制[J]. 华南理工大学学报(自然科学版), 2018, 46(1): 78-84. LIN F, NI L Q, ZHAO Y Q, et al. Path following control of intelligent vehicles considering lateral stability [J]. Journal of South China University of Technology (Natural Science Edition), 2018, 46(1): 78-84. (in Chinese)
[4] 陈慧岩, 陈舒平, 龚建伟. 智能汽车横向控制方法研究综述[J]. 兵工学报, 2017, 38(6): 1203-1214. CHEN H Y, CHEN S P, GONG J W. A review on the research of lateral control for intelligent vehicles [J]. Acta Armamentarii, 2017, 38(6): 1203-1214. (in Chinese)
[5] MARINO R, SCALZI S, NETTO M. Nested PID steering control for lane keeping in autonomous vehicles [J]. Control Engineering Practice, 2011, 19(12): 1459-1467.
[6] NARANJO J E, GONZALEZ C, GARCIA R, et al. Lane-change fuzzy control in autonomous vehicles for the overtaking maneuver [J]. IEEE Transactions on Intelligent Transportation Systems, 2008, 9(3): 438-450.
[7] THRUN S, MONTEMERLO M, DAHLKAMP H, et al. Stanley: The robot that won the DARPA grand challenge [J]. Journal of Field Robotics, 2006, 23(9): 661-692.
[8] HOFFMANN G M, TOMLIN C J, MONTEMERLO M, et al. Autonomous automobile trajectory tracking for off-road driving: Controller design, experimental validation and racing [C]//2007 American Control Conference. New York, USA, 2007: 2296-2301.
[9] ELBANHAWI M, SIMIC M, JAZAR R. Receding horizon lateral vehicle control for pure pursuit path tracking [J]. Journal of Vibration and Control, 2018, 24(3): 619-642.
[10] SAMSON C. Path following and time-varying feedback stabilization of a wheeled mobile robot [C]//Proceedings of the International Conference on Advanced Robotics and Computer Vision. Singapore, 1992: 1-5.
[11] LIN F, CHEN Y K, ZHAO Y Q, et al. Path tracking of autonomous vehicle based on adaptive model predictive control [J]. International Journal of Advanced Robotic Systems, 2019, 16(5): 1729881419880089.
[12] XU S B, PENG H E. Design, analysis, and experiments of preview path tracking control for autonomous vehicles [J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(1): 48-58.
[13] 李爽, 徐延海, 陈静, 等. 基于弧长预瞄的车辆侧向跟踪控制研究[J]. 汽车工程, 2019, 41(6): 668-675. LI S, XU Y H, CHEN J, et al. A study on vehicle lateral tracking control based on arc-length preview [J]. Automotive Engineering, 2019, 41(6): 668-675. (in Chinese)
[14] SUN C Y, ZHANG X, XI L H, et al. Design of a path-tracking steering controller for autonomous vehicles [J]. Energies, 2018, 11(6): 1451.
[15] BROWN M, FUNKE J, ERLIEN S, et al. Safe driving envelopes for path tracking in autonomous vehicles [J]. Control Engineering Practice, 2017, 61: 307-316.
[16] PACEJKA H. Tire and vehicle dynamics [M]. 2nd ed. Amsterdam, Netherlands: Elsevier, 2005: 90-94.
[17] MILLIKEN W F, MILLIKEN D L, OLLEY M. Chassis design: Principles and analysis [M]. Warrendale, USA: Society of Automotive Engineers, 2002.
[18] 陶冰冰, 周海鹰, 王思山. 自动驾驶车辆LQR轨迹跟踪控制器设计[J]. 湖北汽车工业学院学报, 2017, 31(4): 1-6, 11. TAO B B, ZHOU H Y, WANG S S. Design of LQR trajectory tracking controller for autonomous vehicle [J]. Journal of Hubei University of Automotive Technology, 2017, 31(4): 1-6, 11. (in Chinese)
[19] RAJAMANI R. Vehicle dynamics and control [M]. New York, USA: Springer Science & Business Media, 2011.
[1] 辛喆, 张小雪, 陈海亮, 邵明玺, 徐晨翔, 李升波. 节能型异质汽车队列的切换式有界稳定控制[J]. 清华大学学报(自然科学版), 2019, 59(3): 228-235.
[2] 王振雷, 陈登乾, 王昕. 基于多模型切换策略的精馏塔最优控制[J]. 清华大学学报(自然科学版), 2016, 56(4): 430-436.
[3] 付骁鑫, 江永亨, 黄德先, 王京春, 黄开胜. 基于最优计算量分配的公路轨迹规划[J]. 清华大学学报(自然科学版), 2016, 56(3): 273-280.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn