Lateral control using LQR for intelligent vehicles based on the optimal front-tire lateral force
CHEN Liang1, QIN Zhaobo1, KONG Weiwei2, CHEN Xin1
1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China; 2. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
Abstract:A lateral control method for intelligent vehicles is developed based on the optimal front-tire lateral force to improve the lateral stability and the path tracking accuracy of intelligent vehicles going around large curvature turns. A linear quadratic regulator (LQR) controller using feedforward and feedback control is used to determine the desired front-tire lateral force in real time to reduce the tracking error. The control input is then converted into the desired steering angle based on the brush tire model. This method properly retains the nonlinear characteristics of the vehicle and tire models. The LQR controller is verified via simulations on PreScan. The results show that this LQR controller not only reduces the path tracking error relative to the general LQR method, but also ensures lateral stability of the vehicle.
陈亮, 秦兆博, 孔伟伟, 陈鑫. 基于最优前轮侧偏力的智能汽车LQR横向控制[J]. 清华大学学报(自然科学版), 2021, 61(9): 906-912.
CHEN Liang, QIN Zhaobo, KONG Weiwei, CHEN Xin. Lateral control using LQR for intelligent vehicles based on the optimal front-tire lateral force. Journal of Tsinghua University(Science and Technology), 2021, 61(9): 906-912.
[1] 吴艳, 王丽芳, 李芳. 基于滑模自抗扰的智能车路径跟踪控制[J]. 控制与决策, 2019, 34(10): 2150-2156. WU Y, WANG L F, LI F. Intelligent vehicle path following control based on sliding mode active disturbance rejection control [J]. Control and Decision, 2019, 34(10): 2150-2156. (in Chinese) [2] 陈特, 陈龙, 徐兴, 等. 分布式驱动无人车路径跟踪与稳定性协调控制[J]. 汽车工程, 2019, 41(10): 1109-1116. CHEN T, CHEN L, XU X, et al. Integrated control of unmanned distributed driven vehicles path tracking and stability [J]. Automotive Engineering, 2019, 41(10): 1109-1116. (in Chinese) [3] 林棻, 倪兰青, 赵又群, 等. 考虑横向稳定性的智能车辆路径跟踪控制[J]. 华南理工大学学报(自然科学版), 2018, 46(1): 78-84. LIN F, NI L Q, ZHAO Y Q, et al. Path following control of intelligent vehicles considering lateral stability [J]. Journal of South China University of Technology (Natural Science Edition), 2018, 46(1): 78-84. (in Chinese) [4] 陈慧岩, 陈舒平, 龚建伟. 智能汽车横向控制方法研究综述[J]. 兵工学报, 2017, 38(6): 1203-1214. CHEN H Y, CHEN S P, GONG J W. A review on the research of lateral control for intelligent vehicles [J]. Acta Armamentarii, 2017, 38(6): 1203-1214. (in Chinese) [5] MARINO R, SCALZI S, NETTO M. Nested PID steering control for lane keeping in autonomous vehicles [J]. Control Engineering Practice, 2011, 19(12): 1459-1467. [6] NARANJO J E, GONZALEZ C, GARCIA R, et al. Lane-change fuzzy control in autonomous vehicles for the overtaking maneuver [J]. IEEE Transactions on Intelligent Transportation Systems, 2008, 9(3): 438-450. [7] THRUN S, MONTEMERLO M, DAHLKAMP H, et al. Stanley: The robot that won the DARPA grand challenge [J]. Journal of Field Robotics, 2006, 23(9): 661-692. [8] HOFFMANN G M, TOMLIN C J, MONTEMERLO M, et al. Autonomous automobile trajectory tracking for off-road driving: Controller design, experimental validation and racing [C]//2007 American Control Conference. New York, USA, 2007: 2296-2301. [9] ELBANHAWI M, SIMIC M, JAZAR R. Receding horizon lateral vehicle control for pure pursuit path tracking [J]. Journal of Vibration and Control, 2018, 24(3): 619-642. [10] SAMSON C. Path following and time-varying feedback stabilization of a wheeled mobile robot [C]//Proceedings of the International Conference on Advanced Robotics and Computer Vision. Singapore, 1992: 1-5. [11] LIN F, CHEN Y K, ZHAO Y Q, et al. Path tracking of autonomous vehicle based on adaptive model predictive control [J]. International Journal of Advanced Robotic Systems, 2019, 16(5): 1729881419880089. [12] XU S B, PENG H E. Design, analysis, and experiments of preview path tracking control for autonomous vehicles [J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(1): 48-58. [13] 李爽, 徐延海, 陈静, 等. 基于弧长预瞄的车辆侧向跟踪控制研究[J]. 汽车工程, 2019, 41(6): 668-675. LI S, XU Y H, CHEN J, et al. A study on vehicle lateral tracking control based on arc-length preview [J]. Automotive Engineering, 2019, 41(6): 668-675. (in Chinese) [14] SUN C Y, ZHANG X, XI L H, et al. Design of a path-tracking steering controller for autonomous vehicles [J]. Energies, 2018, 11(6): 1451. [15] BROWN M, FUNKE J, ERLIEN S, et al. Safe driving envelopes for path tracking in autonomous vehicles [J]. Control Engineering Practice, 2017, 61: 307-316. [16] PACEJKA H. Tire and vehicle dynamics [M]. 2nd ed. Amsterdam, Netherlands: Elsevier, 2005: 90-94. [17] MILLIKEN W F, MILLIKEN D L, OLLEY M. Chassis design: Principles and analysis [M]. Warrendale, USA: Society of Automotive Engineers, 2002. [18] 陶冰冰, 周海鹰, 王思山. 自动驾驶车辆LQR轨迹跟踪控制器设计[J]. 湖北汽车工业学院学报, 2017, 31(4): 1-6, 11. TAO B B, ZHOU H Y, WANG S S. Design of LQR trajectory tracking controller for autonomous vehicle [J]. Journal of Hubei University of Automotive Technology, 2017, 31(4): 1-6, 11. (in Chinese) [19] RAJAMANI R. Vehicle dynamics and control [M]. New York, USA: Springer Science & Business Media, 2011.