Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (6): 636-642    DOI: 10.16511/j.cnki.qhdxxb.2020.22.44
  工程力学 本期目录 | 过刊浏览 | 高级检索 |
基于非概率模型的飞机襟翼故障树分析
周长聪1, 常琦1, 周春苹2, 赵浩东1, 史壮科1
1. 西北工业大学 工程力学系, 飞行器可靠性工程研究所, 西安 710129;
2. 航空工业济南特种结构研究所 高性能电磁窗航空科技重点实验室, 济南 250023
Fault tree analysis of an aircraft flap system based on a non-probability model
ZHOU Changcong1, CHANG Qi1, ZHOU Chunping2, ZHAO Haodong1, SHI Zhuangke1
1. Institute of Aircraft Reliability Engineering, Department of Engineering Mechanics, Northwestern Polytechnical University, Xi'an 710129, China;
2. Key Laboratory for Airborne Hi-Performance Electro-Magnetic Window, RISAC, Jinan 250023, China
全文: PDF(2077 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 当系统中各组件的失效概率采用区间模型表征时,可以建立基于故障树的系统可靠性分析方法。该文提出一种非概率可靠性指标,该指标首次将系统安全标准或可靠性要求考虑其中,从而可以合理地评价系统的可靠性。基于非概率可靠性指标推导了用于确定各基本事件贡献程度的灵敏度指标,并将所提方法应用到某型飞机襟翼机构不对称运动故障树分析中。结果显示:所提方法可以合理评估系统可靠性并有效计算各基本事件的可靠性灵敏度,从而为开展系统可靠性优化设计提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周长聪
常琦
周春苹
赵浩东
史壮科
关键词 系统可靠性灵敏度襟翼故障树区间变量    
Abstract:A fault tree based system reliability method was developed to predict the failure probabilities of system components by a non-probability interval model. A non-probabilistic reliability index was developed which included reliability or safety criteria to evaluate the system reliability. Then, two sensitivity indices were developed to indicate the contribution of each basic event. This method was then used for a fault tree analysis of the unilateral asymmetric movement of an aircraft flap system. The results show that this method can accurately predict the system reliability and can accurately identify important events to provide references for optimizing the system reliability.
Key wordssystem reliability    sensitivity    aircraft flap    fault tree    interval variable
收稿日期: 2020-10-09      出版日期: 2021-04-28
基金资助:国家自然科学基金项目(51975476);陕西省自然科学基础研究计划(2020JM-135);西北工业大学研究生创意创新种子基金(CX2020115)
作者简介: 周长聪(1987-),男,副教授。E-mail:changcongzhou@nwpu.edu.cn
引用本文:   
周长聪, 常琦, 周春苹, 赵浩东, 史壮科. 基于非概率模型的飞机襟翼故障树分析[J]. 清华大学学报(自然科学版), 2021, 61(6): 636-642.
ZHOU Changcong, CHANG Qi, ZHOU Chunping, ZHAO Haodong, SHI Zhuangke. Fault tree analysis of an aircraft flap system based on a non-probability model. Journal of Tsinghua University(Science and Technology), 2021, 61(6): 636-642.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.22.44  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I6/636
  
  
  
  
  
  
  
[1] ERICSON C A. Fault tree analysis[C]//System Safety Conference. Orlando, USA, 1999:1-9.
[2] CHANG J R, CHANG K H, LIAO S H. The reliability of general vague fault-tree analysis on weapon systems fault diagnosis[J]. Soft Computing, 2006, 10(7):531-542.
[3] PURBA J H. A fuzzy-based reliability approach to evaluate basic events of fault tree analysis for nuclear power plant probabilistic safety assessment[J]. Annals of Nuclear Energy, 2014, 70:21-29.
[4] LIANG X L, ZHAO Y X, ZHOU Z H. Research on application of fuzzy fault tree analysis in the electronic equipment fault diagnosis[C]//The 2nd International Conference on Computer and Automation Engineering (ICCAE). Singapore, 2010:65-67.
[5] SENOL Y E, AYDOGDU Y V, SAHIN B, et al. Fault tree analysis of chemical cargo contamination by using fuzzy approach[J]. Expert Systems with Applications, 2015, 42(12):5232-5244.
[6] CAO Y Y, WANG J, XIE R, et al. Fault tree analysis of electro-mechanical actuators[C]//The 34th Chinese Control Conference (CCC). Hangzhou, China, 2015:6392-6396.
[7] RUIJTERS E, STOELINGA M. Fault tree analysis:A survey of the state-of-the-art in modeling, analysis and tools[J]. Computer Science Review, 2015, 15-16:29-62.
[8] SAMSON S, RENEKE J A, WIECEK M M. A review of different perspectives on uncertainty and risk and an alternative modeling paradigm[J]. Reliability Engineering & System Safety, 2009, 94(2):558-567.
[9] ELISHAKOFF I. Essay on uncertainties in elastic and viscoelastic structures:From A. M. Freudenthal's criticisms to modern convex modeling[J]. Computers & Structures, 1995, 56(6):871-895.
[10] BEN-HAIM Y, ELISHAKOFF I. Convex models of uncertainty in applied mechanics[M]. Amsterdam, Netherlands:Elsevier, 1990.
[11] 郭书祥. 非随机不确定结构的可靠性方法和优化设计研究[D]. 西安:西北工业大学, 2002. GUO S X. Non-stochastic reliability and optimization of uncertain structural systems[D]. Xi'an, China:Northwestern Polytechnical University, 2002. (in Chinese)
[12] BEN-HAIM Y. A non-probabilistic concept of reliability[J]. Structural Safety, 1994, 14(4):227-245.
[13] CARLSON C S. Effective FMEAs:Achieving safe, reliable, and economical products and processes using failure mode and effects analysis[M]. Hoboken, USA:John Wiley & Sons, 2012.
[14] MODARRES M. Risk analysis in engineering:Techniques, tools, and trends[M]. Boca Raton, USA:CRC Press, 2016.
[15] 吕震宙, 宋述芳, 李洪双, 等. 结构机构可靠性及可靠性灵敏度分析[M]. 北京:科学出版社, 2009. LU Z Z, SONG S F, LI H S, et al. Reliability and reliability sensitivity analysis for structure and mechanics[M]. Beijing, China:Science Press, 2009. (in Chinese)
[16] AVEN T, NØKLAND T E. On the use of uncertainty importance measures in reliability and risk analysis[J]. Reliability Engineering & System Safety, 2010, 95(2):127-133.
[17] YOUNGBLOOD R W. Risk significance and safety significance[J]. Reliability Engineering & System Safety, 2001, 73(2):121-136.
[18] BARALDI P, ZIO E, COMPARE M. A method for ranking components importance in presence of epistemic uncertainties[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(5):582-592.
[19] CUI L J, LU Z Z, HAO W R. Importance analysis of the aircraft flap mechanism movement failure[J]. Journal of Aircraft, 2011, 48(2):612-622.
[20] FELDMAN A. Manipulation and the Pareto rule[J]. Journal of Economic Theory, 1979, 21(3):473-482.
[1] 王喆鑫, 刘辉, 程李, 高丽蕾, 吕振雷, 江年铭, 何作祥, 刘亚强. 基于Monte Carlo模拟的全身骨扫描SPECT专用准直器设计[J]. 清华大学学报(自然科学版), 2023, 63(5): 811-817.
[2] 刘鹏, 乔心州. 大跨度完全约束空间3-DOF柔索驱动并联机器人稳定性灵敏度研究[J]. 清华大学学报(自然科学版), 2022, 62(9): 1548-1558.
[3] 周伟, 李敏, 丘铭军, 张西龙, 柳江, 张洪波. 基于改进遗传算法的车身板件厚度优化[J]. 清华大学学报(自然科学版), 2022, 62(3): 523-532.
[4] 许海燕, 王营康, 杜跃进, 闫健恩, 张兆心. 基于故障树的域名解析故障分析方法[J]. 清华大学学报(自然科学版), 2017, 57(7): 680-686.
[5] 王婉娣, 张辉. 排烟启动时间对烟气控制的影响[J]. 清华大学学报(自然科学版), 2016, 56(2): 223-228.
[6] 窦福印, 王鹏, 余兴龙. 提高角度法SPR检测系统分辨率的方法[J]. 清华大学学报(自然科学版), 2014, 54(2): 202-206.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn