Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (8): 664-671,682    DOI: 10.16511/j.cnki.qhdxxb.2020.25.003
  专题:数据库 本期目录 | 过刊浏览 | 高级检索 |
基于多模态医学图像的Alzheimer病分类方法
韩坤1, 潘海为1, 张伟2, 边晓菲1, 陈春伶1, 何舒宁1
1. 哈尔滨工程大学 计算机科学与技术学院, 哈尔滨 150001;
2. 黑龙江大学 现代教育技术中心, 哈尔滨 150001
Alzheimer's disease classification method based on multi-modal medical images
HAN Kun1, PAN Haiwei1, ZHANG Wei2, BIAN Xiaofei1, CHEN Chunling1, HE Shuning1
1. College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China;
2. Modern Education Technology Center, Heilongjiang University, Harbin 150001, China
全文: PDF(2831 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 多模态医学影像信息已经在计算机辅助检测和诊断中被广泛地应用。在对Alzheimer病(Alzheimer's disease,AD)的分类与诊断中,结合多个模态医学影像的特征信息能够更加准确且全面地对同一AD主题进行分类与诊断。该文提出了一种基于卷积神经网络的模型结构,分别对AD病患的磁共振图像(MRI)和正电子发射型计算机断层显像(PET)图像进行3D卷积操作来提取各自模态的特征信息,并应用模型融合方法对模态特征信息加以融合,从而得到包含更加丰富的多模态特征信息。最后用全连接神经网络将上述提取的多模态特征信息进行分类预测。通过在AD神经影像学倡议(Alzheimer's disease neuroimaging initiative,ADNI)公开数据集上的实验结果表明:该文所提出的模型在准确率(accuracy,ACC)和曲线下面积(area under the curve,AUC)的性能评价中都取得了更加优越的结果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩坤
潘海为
张伟
边晓菲
陈春伶
何舒宁
关键词 Alzheimer病(AD)磁共振影像(MRI)正电子发射型计算机断层显像(PET)图像分类深度学习卷积神经网络    
Abstract:Multi-modal medical image information has been widely used in computer-aided detection and computer-aided diagnosis in the medical community. Feature information from multi-modal medical images can be used to accurately classify and diagnosis Alzheimer's disease (AD) characteristics. This paper presents a convolutional neural network model for 3D convolution operations on magnetic resonance imaging (MRI) and positron emission computed tomography (PET) images of Alzheimer's subjects to extract the feature information for the various modalities. Then, models are used to fuse these modal information sets into a rich multi-modal feature information dataset. Finally, this dataset is classified and predicted using a fully connected neural network. Tests on the public data set of the AD neuroimaging initiative show that this model more accurately evaluates accuracy (ACC) and area under the curve (AUC) conditions.
Key wordsAlzheimer's disease (AD)    magnetic resonance imaging (MRI)    positron emission computed tomography (PET)    image classification    deep learning    convolutional neural networks
收稿日期: 2019-08-14      出版日期: 2020-06-17
基金资助:潘海为,副教授,E-mail:panhaiwei@hrbeu.edu.cn
引用本文:   
韩坤, 潘海为, 张伟, 边晓菲, 陈春伶, 何舒宁. 基于多模态医学图像的Alzheimer病分类方法[J]. 清华大学学报(自然科学版), 2020, 60(8): 664-671,682.
HAN Kun, PAN Haiwei, ZHANG Wei, BIAN Xiaofei, CHEN Chunling, HE Shuning. Alzheimer's disease classification method based on multi-modal medical images. Journal of Tsinghua University(Science and Technology), 2020, 60(8): 664-671,682.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.25.003  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I8/664
  
  
  
  
  
  
  
[1] ZHAN L, ZHOU J Y, WANG Y L, et al. Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer's disease[J]. Frontiers in Aging Neuroscience, 2015, 7:48.
[2] CHRISTINA P. World Alzheimer report 2018[R]. London:Alzheimer's Disease International, 2018.
[3] PETERSEN R C. Mild cognitive impairment[J]. The Lancet, 2006, 367(9527):P1979.
[4] LITJENS G, SÁNCHEZ C I, TIMOFEEVA N, et al. Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis[J]. Nature Scientific Reports, 2016, 6:26286.
[5] GAO L L, PAN H W, LI Q, et al. Brain medical image diagnosis based on corners with importance-values[J]. BMC Bioinformatics, 2017, 18:505.
[6] GAO L L, PAN H W, XIE X Q, et al. Graph modeling and mining methods for brain images[J]. Multimedia Tools and Applications, 2016, 75(15):9333-9369.
[7] ZHANG D, SHEN D. Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease[J]. NeuroImage, 2012, 59(2):895-907.
[8] KOROLEV S, SAFIULLIN A, BELYAEV M, et al. Residual and plain convolutional neural networks for 3D brain MRI classification[C]//2017 IEEE 14th International Symposium on Biomedical Imaging. Melbourne, Australia:IEEE, 2017, 4:18-21.
[9] BRON E E, SMITS M, VAN DER FLIER W M, et al. Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI:The CAD dementia challenge[J]. NeuroImage, 2015, 111:562-579.
[10] GRAY K R, WOLZ R, HECKEMANN R A, et al. Multi-region analysis of longitudinal FDG-PET for the classification of Alzheimer's disease[J]. NeuroImage, 2012, 60(1):221-229.
[11] GRAY K R, WOLZ R, KEIHANINEJAD S, et al. Regional analysis of FDG-PET for use in the classification of Alzheimer's disease[C]//2011 IEEE International Symposium on Biomedical Imaging:From Nano to Macro. Chicago, USA:IEEE, 2011, 3:1082-1085.
[12] SILVEIRA M, MARQUES J. Boosting Alzheimer disease diagnosis using PET images[C]//2010 20th International Conference on Pattern Recognition. Istanbul, Turkey:IEEE, 2015, 8:2556-2559.
[13] LIU M H, CHENG D N, YAN W W. Classification of Alzheimer's disease by combination of convolutional and recurrent neural networks using FDG-PET images[J]. Frontiers in Neuroinformatics, 2018, 12:35.
[14] ÇIÇEK Ö, ABDULKADIR A, LIENKAMP S S, et al. 3D U-net:Learning dense volumetric segmentation from sparse annotation[C]//Proceedings of the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention. Athens, Greece:Springer, 2016:1-8.
[15] DOLZ J, DESROSIERS C, AYED I B. 3D fully convolutional networks for subcortical segmentation in MRI:A large-scale study[J]. NeuroImage, 2018, 170:456-470.
[16] SABUNCU M R, KONUKOGLU E. Clinical prediction from structural brain MRI Scans:A large-scale empirical study[J]. Neuroinformatics, 2015, 13(1):31-46.
[17] LU S, XIA Y, CAI T W, et al. Semi-supervised manifold learning with affinity regularization for Alzheimer's disease identification using positron emission tomography imaging[C]//Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Milan, Italy:IEEE, 2015:2251-2254.
[18] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM:Visual explanations from deep networks via gradient-based localization[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy:IEEE, 2017:618-626.
[19] MU Y L, GAGE F H. Adult hippocampal neurogenesis and its role in Alzheimer's disease[J]. Molecular Neurodegeneration, 2011, 6:85.
[20] OTT B R, COHEN R A, ASSAWIN G, et al. Brain ventricular volume and cerebrospinal fluid biomarkers of Alzheimer's disease[J]. Journal of Alzheimer's Disease, 2010, 20(2):647-657.
[1] 杨波, 邱雷, 吴书. 异质图神经网络协同过滤模型[J]. 清华大学学报(自然科学版), 2023, 63(9): 1339-1349.
[2] 黄贲, 康飞, 唐玉. 基于目标检测的混凝土坝裂缝实时检测方法[J]. 清华大学学报(自然科学版), 2023, 63(7): 1078-1086.
[3] 陈波, 张华, 陈永灿, 李永龙, 熊劲松. 基于特征增强的水工结构裂缝语义分割方法[J]. 清华大学学报(自然科学版), 2023, 63(7): 1135-1143.
[4] 杜晓闯, 梁漫春, 黎岢, 俞彦成, 刘欣, 汪向伟, 王汝栋, 张国杰, 付起. 基于卷积神经网络的γ放射性核素识别方法[J]. 清华大学学报(自然科学版), 2023, 63(6): 980-986.
[5] 邓青, 张博, 李宜豪, 周亮, 周正青, 蒋慧灵, 高扬. 基于级联CNN的疏散场景中人群数量估计模型[J]. 清华大学学报(自然科学版), 2023, 63(1): 146-152.
[6] 苗旭鹏, 张敏旭, 邵蓥侠, 崔斌. PS-Hybrid: 面向大规模推荐模型训练的混合通信框架[J]. 清华大学学报(自然科学版), 2022, 62(9): 1417-1425.
[7] 梅杰, 李庆斌, 陈文夫, 邬昆, 谭尧升, 刘春风, 王东民, 胡昱. 基于目标检测模型的混凝土坯层覆盖间歇时间超时预警[J]. 清华大学学报(自然科学版), 2021, 61(7): 688-693.
[8] 管志斌, 王晓萌, 辛伟, 王嘉捷. 源代码缺陷检测数据生成及标注方法[J]. 清华大学学报(自然科学版), 2021, 61(11): 1240-1245.
[9] 王晓萌, 管志斌, 辛伟, 王嘉捷. 基于深度卷积神经网络的源代码缺陷检测方法[J]. 清华大学学报(自然科学版), 2021, 61(11): 1267-1272.
[10] 王志国, 章毓晋. 监控视频异常检测:综述[J]. 清华大学学报(自然科学版), 2020, 60(6): 518-529.
[11] 孙博文, 张鹏, 成茗宇, 李新童, 李祺. 基于代码图像增强的恶意代码检测方法[J]. 清华大学学报(自然科学版), 2020, 60(5): 386-392.
[12] 蒋文斌, 王宏斌, 刘湃, 陈雨浩. 基于AVX2指令集的深度学习混合运算策略[J]. 清华大学学报(自然科学版), 2020, 60(5): 408-414.
[13] 余传明, 原赛, 胡莎莎, 安璐. 基于深度学习的多语言跨领域主题对齐模型[J]. 清华大学学报(自然科学版), 2020, 60(5): 430-439.
[14] 宋欣瑞, 张宪琦, 张展, 陈新昊, 刘宏伟. 多传感器数据融合的复杂人体活动识别[J]. 清华大学学报(自然科学版), 2020, 60(10): 814-821.
[15] 林鹏, 魏鹏程, 樊启祥, 陈闻起. 基于CNN模型的施工现场典型安全隐患数据学习[J]. 清华大学学报(自然科学版), 2019, 59(8): 628-634.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn