Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (4): 292-298    DOI: 10.16511/j.cnki.qhdxxb.2020.25.006
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
单摆角五轴数控机床摆头几何误差测量与精度验证
王立平1, 张世珍1,2, 王冬1
1. 清华大学 机械工程系, 北京 100084;
2. 北京工研精机股份有限公司, 北京 101312
Geometric error measurement and accuracy verification of the swing head of a five-axis CNC machine tool with a single swing angle
WANG Liping1, ZHANG Shizhen1,2, WANG Dong1
1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
2. Beijing Precision Machinery & Engineering Research Co. Ltd., Beijing 101312, China
全文: PDF(3557 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 摆角精度是影响五轴数控机床加工性能的关键因素,而对摆头各项几何误差进行准确测量是机床实际应用过程中的重要技术环节。该文以一台用于航空发动机机匣加工的单摆角五轴数控机床为研究对象,对其摆头几何误差进行了测量,并完成了精度验证。首先,介绍了摆头直驱五轴数控机床的整体结构,针对主轴端面至A轴回转中心距离偏差、摆头摆动扇面与YZ平面偏差和主轴轴线与A轴轴线高度差等摆头主要几何误差,提出了实用的测量方法,并开展了相应的测量实验;其次,对摆角定位精度进行了检测并分析了相应的位置偏差;最后,完成了机匣模拟试件切削。检测结果表明试件符合加工要求,充分证明了样机具有良好的摆角精度。该文所提出的误差测量方法为提升五轴数控机床的实际加工性能奠定了基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王立平
张世珍
王冬
关键词 摆头几何误差五轴数控机床误差测量精度验证    
Abstract:The swing angle accuracy is a key factor which strongly affects the machining performance of five-axis CNC machine tools and accurate measurements of the geometric error. This study measured the geometric swing head error of a five-axis CNC machine tool designed for machining aero-engine casings to verify the accuracy. This paper described a machine tool structure with a single direct-drive swing head and measurements of the main geometric errors of the swing head, including the deviation from the spindle end-face to the rotational center of the A-axis, the deviation between the swing sector and the YZ plane, and the height difference between the spindle axis and the A-axis. Then, the swing angle positioning accuracy was measured with the related position error. A cutting test on a simulated aero-engine casing showed that the machine tool swing angle accuracy was sufficiently accurate to properly machine the casing. The methods presented in this paper provide a foundation for improving the machining accuracy of five-axis machine tools in industry.
Key wordsgeometric error of the swing head    five-axis CNC machine tool    error measurement    accuracy verification
收稿日期: 2019-07-08      出版日期: 2020-04-03
基金资助:国家科技重大专项资助项目(2017ZX04021001,2017ZX04002001)
引用本文:   
王立平, 张世珍, 王冬. 单摆角五轴数控机床摆头几何误差测量与精度验证[J]. 清华大学学报(自然科学版), 2020, 60(4): 292-298.
WANG Liping, ZHANG Shizhen, WANG Dong. Geometric error measurement and accuracy verification of the swing head of a five-axis CNC machine tool with a single swing angle. Journal of Tsinghua University(Science and Technology), 2020, 60(4): 292-298.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.25.006  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I4/292
  图1 某典型机匣零件示意图
  图2 五轴数控机床总体布局
  表1 五轴数控机床主要技术指标
  图3 单摆角铣头结构示意图
  图4 用于航空发动机机匣加工的五轴数控机床样机
  图5 主轴端面至A 轴回转中心距离偏差测量示意图
  图6 摆头与Y Z 平面偏差测量示意图
  图7 δ XA 测量情况
  图8 摆动扇面与Y Z 平面偏差调整示意图
  图9 调整量δ YA 计算示意图
  图1 0 主轴轴线与A 轴轴线高度差测量示意图
  图1 1 摆角定位精度检测示意图
  图1 2 摆角定位精度检测数据
  图1 3 摆角误差引起的位置偏差
  图1 4 航空发动机机匣模拟试件(单位: mm)
  表2 机匣模拟试件加工精度检测结果
  表2 机匣模拟试件加工精度检测结果
[1] 唐克岩. 我国数控机床产业发展现状与展望[J]. 机床与液压, 2012, 40(5):145-147. TANG K Y. Development situation and trend of NC machine tool in China[J]. Machine Tool & Hydraulics, 2012, 40(5):145-147. (in Chinese)
[2] 刘大炜, 汤立民. 国产高档数控机床的发展现状及展望[J]. 航空制造技术, 2014(3):40-43. LIU D W, TANG L M. Current situation and prospect of domestic advanced NC machine tool[J]. Aeronautical Manufacturing Technology, 2014(3):40-43. (in Chinese)
[3] 梁铖, 刘建群. 五轴联动数控机床技术现状与发展趋势[J]. 机械制造, 2010, 48(1):5-7. LIANG C, LIU J Q. Technology status and developing trends of five-axis CNC machine tools[J]. Machinery, 2010, 48(1):5-7. (in Chinese)
[4] 姜忠, 丁杰雄, 杜丽, 等. 五轴联动机床联动精度检测及优化方法[J]. 制造技术与机床, 2017(4):92-96. JIANG Z, DING J X, DU L, et al. A measuring and optimizing method of five-axis linkage accuracy of CNC machine tools[J]. Manufacturing Technology & Machine Tool, 2017(4):92-96. (in Chinese)
[5] UDDIN M S, IBARAKI S, MATSUBARA A, et al. Prediction and compensation of machining geometric errors of five-axis machining centers with kinematic errors[J]. Precision Engineering, 2009, 33(2):194-201.
[6] WANG J D, GUO J J. Research on volumetric error compensation for NC machine tool based on laser tracker measurement[J]. Science China Technological Sciences, 2012, 55(11):3000-3009.
[7] HE Z Y, FU J Z, ZHANG L C, et al. A new error measurement method to identify all six error parameters of a rotational axis of a machine tool[J]. International Journal of Machine Tools and Manufacture, 2015, 88:1-8.
[8] DASSANAYAKE K M M, TSUTSUMI M, SAITO A. A strategy for identifying static deviations in universal spindle head type multi-axis machining centers[J]. International Journal of Machine Tools and Manufacture, 2006, 46(10):1097-1106.
[9] ZARGARBASHI S H H, MAYER J R R. Assessment of machine tool trunnion axis motion error, using magnetic double ball bar[J]. International Journal of Machine Tools and Manufacture, 2006, 46(14):1823-1834.
[10] FLORUSSEN G H J, SPAAN H A M. Dynamic R-test for rotary tables on 5-axis machine tools[J]. Procedia CIRP, 2012, 1:536-539.
[11] WEIKERT S. R-test, a new device for accuracy measurements on five axis machine tools[J]. CIRP Annals, 2004, 53(1):429-432.
[12] IBARAKI S, OYAMA C, OTSUBO H. Construction of an error map of rotary axes on a five-axis machining center by static R-test[J]. International Journal of Machine Tools and Manufacture, 2011, 51(3):190-200.
[13] JIANG Z, DING J X, SONG Z Y, et al. Modeling and simulation of surface morphology abnormality of ‘S’ test piece machined by five-axis CNC machine tool[J]. The International Journal of Advanced Manufacturing Technology, 2016, 85(9-12):2745-2759.
[14] 潘磊, 翟莹莹. 航空发动机典型零件加工技术及装备探讨[J]. 中国新技术新产品, 2017(2):41. PAN L, ZHAI Y Y. Discussion on machining technology and equipment of typical aero-engine parts[J]. New Technologies and New Products, 2017(2):41. (in Chinese)
[15] 王俊霞, 陈菁菁. 航空发动机机匣构件机械加工工艺的优化[J]. 中国新技术新产品, 2018(21):56-57. WANG J X, CHEN J J. Optimization of machining technology of aero-engine casing components[J]. New Technologies and New Products, 2018(21):56-57. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn