Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (8): 683-692    DOI: 10.16511/j.cnki.qhdxxb.2020.25.012
  专题:数据库 本期目录 | 过刊浏览 | 高级检索 |
交通数据的时空并置模糊拥堵模式挖掘
王晓旭, 王丽珍, 王家龙
云南大学 信息科学与工程学院, 昆明 650000
Mining spatio-temporal co-location fuzzy congestion patterns from traffic datasets
WANG Xiaoxu, WANG Lizhen, WANG Jialong
School of Information Science and Engineering, Yunnan University, Kunming 650000, China
全文: PDF(3388 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 交通拥堵是道路网络中总车流量大于道路承载量,导致交通流无法畅行的现象。基于交通流数据挖掘的拥堵模式对于解决道路交通拥堵问题具有重要的现实意义。然而,现有的研究工作未能对"交通拥堵"进行合理准确的定义,忽略了交通流数据本身具有的时空属性和交通拥堵概念本身的模糊性。该文首先将模糊集理论引入到交通拥堵的定义中,提出用模糊隶属度衡量交通拥堵程度;其次,在传统空间并置模式挖掘的基础上加入时间属性,提出时空并置模糊拥堵模式的概念;再次,在该概念的基础上提出了挖掘时空并置模糊拥堵模式的有效方法;最后,在实际数据集上对提出的方法进行了广泛的实验评估。实验结果表明:该方法在挖掘结果上优于现有方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王晓旭
王丽珍
王家龙
关键词 信息处理空间数据挖掘时空特征时空并置模糊拥堵模式模糊参与度    
Abstract:Traffic congestion occurs when the total traffic volume on the road network exceeds the road capacity which disrupts normal traffic flow. The congestion patterns in traffic datasets need to be mined to effectively address urban traffic congestion problems. However, existing research work has failed to reasonably and accurately define "traffic congestion" and ignores the spatio-temporal attributes of the traffic flow data and the fuzziness of the traffic congestion concept. This paper presents the concept of spatio-temporal co-location fuzzy congestion patterns by introducing fuzzy set theory into the definition of traffic congestion to measure the degree of traffic congestion. The algorithm also adds the time attribute to the traditional spatial co-location pattern mining. Two algorithms are then presented for mining spatio-temporal co-location fuzzy congestion patterns. The methods are evaluated using real traffic datasets with the results showing that the methods provide better mining results than the existing methods.
Key wordsinformation processing    spatial data mining    spatio-temporal features    spatio-temporal co-location fuzzy congestion pattern    fuzzy participation index
收稿日期: 2019-09-24      出版日期: 2020-06-17
基金资助:王丽珍,教授,E-mail:lzhwang@ynu.edu.cn
引用本文:   
王晓旭, 王丽珍, 王家龙. 交通数据的时空并置模糊拥堵模式挖掘[J]. 清华大学学报(自然科学版), 2020, 60(8): 683-692.
WANG Xiaoxu, WANG Lizhen, WANG Jialong. Mining spatio-temporal co-location fuzzy congestion patterns from traffic datasets. Journal of Tsinghua University(Science and Technology), 2020, 60(8): 683-692.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.25.012  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I8/683
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 刘静. 基于状态划分的交通流短时预测方法研究[D]. 北京:北京交通大学, 2007. LIU J. Study on the short-term prediction method of traffic flow based on state division[D]. Beijing:Beijing Jiaotong University, 2007. (in Chinese)
[2] 姜桂艳, 常安德, 牛世峰. 基于车牌识别数据的交通拥堵识别方法[J]. 哈尔滨工业大学学报, 2011, 43(4):131-135. JIANG G Y, CHANG A D, NIU S F. Traffic congestion identification method based on license plate recognition data[J]. Journal of Harbin Institute of Technology, 2011, 43(4):131-135. (in Chinese)
[3] DIKER A C, NASIBOV E. Estimation of traffic congestion level via FN-DBSCAN algorithm by using GPS data[C]//2012 IV International Conference "Problems of Cybernetics and Informatics". Baku, Azerbaijan:IEEE, 2012:1-4.
[4] CHU V W, WONG R K, LIU W, et al. Causal structure discovery for spatio-temporal data[M]//BHOWMICK S S, DYRESON C E, JENSEN C S, et al. Database Systems for Advanced Applications. Cham:Springer, 2014:236-250.
[5] LAKHOUILI A, MEDROMI H, ESSOUFI E H. Urbain traffic congestion estimating using simplified CRONOS model:Algorithm and implementation[J]. International Journal of Computer Techniques, 2015, 2(5):103-110.
[6] LAKHOUILI A, ESSOUFI E H, MEDROMI H. A regulation model of urban traffic congestion:Algorithm and implementation[C]//2015 5th World Congress on Information and Communication Technologies. Marrakech, Morocco:IEEE, 2015:78-82.
[7] 王丽珍, 陈红梅. 空间模式挖掘理论与方法[M]. 北京:科学出版社, 2014. WANG L Z, CHEN H M. Spatial pattern mining[M]. Beijing:Science Press, 2014. (in Chinese)
[8] SHEKHAR S, HUANG Y. Discovering spatial co-location patterns:A summary of results[C]//Proceedings of the 7th International Symposium on Advances in Spatial and Temporal Databases (SSTD). Berlin, Heidelberg:Springer, 2001:236-256.
[9] YOO J S, SHEKHAR S. A join-less approach for mining spatial co-location patterns[J]. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(10):1323-1337.
[10] YANG P Z, WANG L Z, WANG X X. A parallel spatial co-location pattern mining approach based on ordered clique growth[C]//Proceedings of the 23nd International Conference on Database Systems for Advanced Applications. New York, USA:Springer, 2018:734-742.
[11] WANG L Z, BAO X G, ZHOU L H, et al. Mining maximal sub-prevalent co-location patterns[J]. World Wide Web, 2019, 22(5):1971-1997.
[12] WANG L Z, BAO X G, ZHOU L H. Redundancy reduction for prevalent co-location patterns[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(1):142-155.
[13] YANG P Z, WANG L Z, WANG X X, et al. An effective approach on mining co-location patterns from spatial databases with rare features[C]//2019 20th International Conference on Mobile Data Management. Hong Kong, China:IEEE, 2019:53-62.
[14] YANG S S, WANG L Z, BAO X G, et al. A framework for mining spatial high utility co-location patterns[C]//2015 12th International Conference on Fuzzy Systems and Knowledge Discovery. Zhangjiajie, China:IEEE, 2015:631-637.
[15] OUYANG Z P, WANG L Z, WU P P. Spatial co-location pattern discovery from fuzzy objects[J]. International Journal on Artificial Intelligence Tools, 2017, 26(2):1750003.
[16] 吴萍萍, 王丽珍, 周永恒. 带模糊属性的空间Co-location模式挖掘研究[J]. 计算机科学与探索, 2013, 7(4):348-358. WU P P, WANG L Z, ZHOU Y H. Discovering co-location from spatial data sets with fuzzy attributes[J]. Journal of Frontiers of Computer Science & Technology, 2013, 7(4):348-358. (in Chinese)
[17] CELTIC M. Discovering partial spatio-temporal co-occurrence patterns[C]//Proceedings 2011 IEEE International Conference on Spatial Data Mining and Geographical Knowledge Services. Fuzhou, China:IEEE, 2011:116-120.
[18] QIAN F, YIN L, HE Q M, et al. Mining spatio-temporal co-location patterns with weighted sliding window[C]//Intelligent Computing and Intelligent Systems. Shanghai, China:IEEE, 2009:181-185.
[19] NGUYEN H, LIU W, CHEN F. Discovering congestion propagation patterns in spatio-temporal traffic data[J]. IEEE Transactions on Big Data, 2017, 3(2):169-180.
[20] HE Y, WANG L Z, FANG Y, et al. Discovering congestion propagation patterns by co-location pattern mining[C]//Proceedings of the Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint International Conference on Web and Big Data. Macau, China:Springer, 2018.
[1] 余嘉茵, 何玉林, 崔来中, 黄哲学. 针对大规模数据的分布一致缺失值插补算法[J]. 清华大学学报(自然科学版), 2023, 63(5): 740-753.
[2] 王春艳, 张景翔, 龙洁, 刘毅. 基于面板数据回归模型的家庭水-能消费时空特征与影响因素[J]. 清华大学学报(自然科学版), 2022, 62(3): 614-626.
[3] 李钧毅, 王丽珍, 陈红梅. dGridTopk-FCPM:一种基于模糊理论和d-网格的Top-k空间co-location模式挖掘方法[J]. 清华大学学报(自然科学版), 2021, 61(9): 943-952.
[4] 丁莹, 张健钦, 杨木, 宫鹏, 贾礼朋, 邓少存. 新冠疫情发生城市仿真模型及防控措施评价——以武汉市为例[J]. 清华大学学报(自然科学版), 2021, 61(12): 1452-1461.
[5] 张婧, 黄德根, 黄锴宇, 刘壮, 孟祥主. 基于λ-主动学习方法的中文微博分词[J]. 清华大学学报(自然科学版), 2018, 58(3): 260-265.
[6] 丁莹, 范静涛, 权巍, 韩成. 视觉系统光学渐晕效应非线性补偿方法[J]. 清华大学学报(自然科学版), 2017, 57(7): 702-706.
[7] 王磊, 匡麟玲, 黄惠明. 基于时空特征的中继卫星系统业务模型[J]. 清华大学学报(自然科学版), 2017, 57(1): 55-60,66.
[8] 姜志威, 丁晓青, 彭良瑞. 针对无切分维吾尔文文本行识别的字符模型优化[J]. 清华大学学报(自然科学版), 2015, 55(8): 873-877,883.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn