Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (12): 985-992    DOI: 10.16511/j.cnki.qhdxxb.2020.25.020
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
基于椭圆双β喷枪模型的喷涂轨迹优化
华霄桐,张思敏,刘兴杰,陈志良,王国磊*(),陈恳
清华大学 机械工程系, 北京 100084
Optimization of spraying trajectory based on elliptical double β spraying gun model
Xiaotong HUA,Simin ZHANG,Xingjie LIU,Zhiliang CHEN,Guolei WANG*(),Ken CHEN
Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(6849 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

喷涂轨迹优化是保证最终涂层高质量的重要环节,直接作用于涂层的成形过程。该文针对平面喷涂提出一种轨迹优化方法,通过互补喷枪模型的优化求解,实现高效、高质量的平面喷涂,并在此基础上针对NURBS(non-uniform rational B-spline)自由曲面喷涂,受启发于绘画时人们采用不同尺寸的画笔描绘不同精细程度的物体,提出可变尺寸画笔的喷涂概念,利用喷涂距离的变化实现喷幅尺寸大小的变化,同时利用变速喷涂,增强喷涂优化方法对各种复杂曲面的处理能力。通过仿真与实验验证,该文提出的方法喷涂平面时,膜厚均匀度损失了1.64%,而漆料利用率提升了13.54%;喷涂自由曲面时,膜厚均匀度由31.68%提升到4.79%。实验结果验证了该文提出方法的有效性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
华霄桐
张思敏
刘兴杰
陈志良
王国磊
陈恳
关键词 喷涂优化互补喷枪模型NURBS曲面可变尺寸画笔变速变距喷涂    
Abstract

Spraying trajectory optimization is important for ensuring high quality coatings because the trajectory directly affects the coating formation. This paper describes a trajectory optimization method for planar spraying. Efficient, high quality planar spraying is realized by solving a complementary spraying gun model. As for NURBS free-form surfaces, artists use different size brushes to create finer features on some objects than on others. This concept of variable size brushes is implemented here by changing the distance from the spray gun to the surface for free-form surfaces. The spraying is further optimized on complex surfaces by varying the spraying speed. Simulations and tests show that the film thickness uniformity is 1.64% worse and the paint utilization rate is 13.54% higher when spraying flat surfaces but that the film thickness uniformity is improved from 31.68% to 4.79% when spraying free-form surfaces. The results verify the effectiveness of this method for free-form surfaces.

Key wordsspraying optimization    complementary spray gun model    NURBS surface    variable-size brushes    spraying with different speeds and distances
收稿日期: 2019-09-03      出版日期: 2020-10-14
通讯作者: 王国磊     E-mail: wangguolei@mail.tsinghua.edu.cn
引用本文:   
华霄桐,张思敏,刘兴杰,陈志良,王国磊,陈恳. 基于椭圆双β喷枪模型的喷涂轨迹优化[J]. 清华大学学报(自然科学版), 2020, 60(12): 985-992.
Xiaotong HUA,Simin ZHANG,Xingjie LIU,Zhiliang CHEN,Guolei WANG,Ken CHEN. Optimization of spraying trajectory based on elliptical double β spraying gun model. Journal of Tsinghua University(Science and Technology), 2020, 60(12): 985-992.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.25.020  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I12/985
  椭圆双β喷枪模型
  轨迹搭接用于均匀涂层厚度
  互补喷枪模型用于均匀涂层厚度的原理图
10.16511/j.cnki.qhdxxb.2020.25.020.T001

基础喷涂模型参数

β 最大膜厚/μm 轮廓跨度/mm
3 50 300
  
基础喷涂模型参数
10.16511/j.cnki.qhdxxb.2020.25.020.T002

互补喷枪模型参数及喷涂效果

指标 数值
拟合β 3.83
最大膜厚/μm 50
轮廓跨度/mm 300
期望膜厚/μm 50
平均膜厚/μm 50.04
膜厚标准差/μm 0.85
  
互补喷枪模型参数及喷涂效果
10.16511/j.cnki.qhdxxb.2020.25.020.T003

三维喷枪模型参数

β1 β2 最大膜厚/μm 椭圆长轴/mm 椭圆短轴/mm
2 2 20 150 30
  
三维喷枪模型参数
  (网络版彩图)3×3 NURBS曲面
  可变尺寸画笔
  平面喷涂实验喷涂路径
10.16511/j.cnki.qhdxxb.2020.25.020.T004

平面喷涂实验参数

实验参数 互补模型法 传统方法
喷涂速度/(mm·s-1) 200 200
椭圆半长轴/mm 150 150
椭圆半短轴/mm 26.74 30
β1 2.26 2
β2 0.79 2
搭接距离/mm / 96.59
  
平面喷涂实验参数
  (网络版彩图)传统喷涂的涂层厚度分布   (网络版彩图)互补喷涂的涂层厚度分布
10.16511/j.cnki.qhdxxb.2020.25.020.T005

漆料利用率及膜厚均匀度对比

参数 互补模型法 传统方法
漆料利用率/% 46.70 33.16
膜厚均匀度/% 1.67 0.03
  
漆料利用率及膜厚均匀度对比
  自由曲面等弧划分所获路径   可变画笔法的路径点停留时间   可变画笔法的喷涂距离   可变画笔法的轨迹速度   可变画笔法的轨迹加速度   (网络版彩图)可变画笔法的涂层厚度分布俯视图   (网络版彩图)传统方法的涂层厚度分布俯视图
10.16511/j.cnki.qhdxxb.2020.25.020.T006

自由曲面喷涂膜厚均匀度对比

参数 可变画笔法 传统方法
膜厚均匀度/% 4.79 31.68
  
自由曲面喷涂膜厚均匀度对比
2 BALKAN T , ARIKAN M A S . Surface and process modeling and off-line programming for robotic spray painting of curved surfaces[J]. Journal of Robotic Systems, 2000. 17 (9): 479- 494.
doi: 10.1002/1097-4563(200009)17:9<479::AID-ROB3>3.0.CO;2-L
3 BALKAN T , ARIKAN M A S . Modeling of paint flow rate flux for circular paint sprays by using experimental paint thickness distribution[J]. Mechanics Research Communications, 1999. 26 (5): 609- 617.
doi: 10.1016/S0093-6413(99)00069-5
4 CONNER D C , GREENFIELD A , ATKAR P N , et al. Paint deposition modeling for trajectory planning on automotive surfaces[J]. IEEE Transactions on Automation Science and Engineering, 2005. 2 (4): 381- 392.
doi: 10.1109/TASE.2005.851631
7 邵振华.基于表面分割的复杂曲面喷涂路径规划与离线编程系统实现[D].南京:东南大学, 2015.
7 SHAO Z H. Spraying trajectory planning based on segmentation of complex free surfaces and development of off-line programming system[D]. Nanjing: Southeast University, 2015. (in Chinese)
8 曾勇.大型复杂自由曲面的喷涂机器人喷枪轨迹优化研究[D].兰州:兰州理工大学, 2011.
8 ZENG Y. The research on spray tool trajectory optimization of painting robot for large and complex free-form curved surface[D]. Lanzhou: Lanzhou University of Technology, 2011. (in Chinese)
9 张鹏.面向大曲率复杂曲面的喷涂机器人喷枪轨迹优化方法研究[D].兰州:兰州理工大学, 2017.
9 ZHANG P. Study on spray too trajectory optimization method of spray-painting robot for large curvature and complex surface[D]. Lanzhou: Lanzhou University of Technology, 2017. (in Chinese)
11 熊浩.面向小曲率曲面的喷涂机器人喷涂轨迹规划[D].重庆:重庆大学, 2016.
11 XIONG H. Spraying trajectory planning of spraying robot on small curvature surface[D]. Chongqing: Chongqing University, 2016. (in Chinese)
13 陈伟.喷涂机器人轨迹优化关键技术研究[D].镇江:江苏大学, 2013.
13 CHEN W. Research on key techniques of robotic spray painting trajectory optimization robot[D]. Zhenjiang: Jiangsu University, 2013.(in Chinese)
14 SHENG W H, XI N, CHEN H P, et al. Part geometric understanding for tool path planning in additive manufacturing[C]//IEEE International Symposium on Computational Intelligence in Robotics and Automation. Computational Intelligence in Robotics and Automation for the New Millennium. Kobe, Japan: IEEE, 2003: 1515-1520.
17 ATKAR P N, CHOSET H, RIZZI A A. Towards optimal coverage of 2-dimensional surfaces embedded in IR3: Choice of start curve[C]//Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas, USA: IEEE, 2003: 3581-3587.
18 邢悦.异形曲面快速重构优化技术研究[D].长春:长春理工大学, 2018.
18 XING Y. Research on rapid reconstruction and optimization of special-shaped surface[D]. Changchun: Changchun University of Science and Technology, 2018. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn