Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (8): 617-629    DOI: 10.16511/j.cnki.qhdxxb.2020.25.023
  专题:摩擦学的前沿研究及应用 本期目录 | 过刊浏览 | 高级检索 |
液体超滑技术发展现状及展望
易双1, 葛翔宇2, 李津津1
1. 清华大学 摩擦学国家重点实验室, 北京 100084;
2. 北京理工大学 机械与车辆学院, 北京 100081
Development and prospects of liquid superlubricity
YI Shuang1, GE Xiangyu2, LI Jinjin1
1. State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China;
2. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
全文: PDF(16331 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 随着我国现代工业的飞速发展,人类发展所必需的能量消耗与日渐匮乏且不可再生资源之间的矛盾日趋严重,其中不必要的摩擦造成的能量损耗约占我国国民生产总值的4.5%。超滑作为摩擦学的一个重要领域,自提出以来吸引着众多研究人员的密切关注与研究。这是因为超滑技术不仅可以提高润滑效率,还能够降低能量损耗并显著提高能源利用率,从而达到节约能源和资源的目的。因此,对超滑现象的产生规律和机理的深入研究,对进一步丰富和完善摩擦学体系有重要的理论意义,同时对超滑系统在工程中的应用有重要的实用价值。该文回顾近年来新型液体材料的超滑特性,并归纳各类液体润滑材料实现超滑的机理。最后,对当前超滑研究中的优劣势做出总结并提出展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
易双
葛翔宇
李津津
关键词 摩擦磨损润滑液体超滑    
Abstract:The rapid industrial development in China is requiring more energy consumption based on non-renewable energy resources. The energy consumption caused by unnecessary friction accounts for about 4.5% of the GDP in China. Many researchers in tribology are investigating superlubricity applications to reduce friction in machinery. Superlubricity improves the lubrication efficiency which reduces the energy consumption and considerably increases the energy utilization rate. This study reviews superlubricity characteristics and mechanisms for lubrication applications. The characteristics of recently developed liquids are reviewed with descriptions of the liquid superlubricity mechanism. Finally, the advantages and disadvantages of the current research on superlubricity are summarized.
Key wordsfriction    wear    lubrication    liquid superlubricity
收稿日期: 2019-12-03      出版日期: 2020-06-17
基金资助:李津津,副教授,E-mail:lijinjin@tsinghua.edu.cn
引用本文:   
易双, 葛翔宇, 李津津. 液体超滑技术发展现状及展望[J]. 清华大学学报(自然科学版), 2020, 60(8): 617-629.
YI Shuang, GE Xiangyu, LI Jinjin. Development and prospects of liquid superlubricity. Journal of Tsinghua University(Science and Technology), 2020, 60(8): 617-629.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.25.023  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I8/617
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] PERRY S S, TYSOE W T. Frontiers of fundamental tribological research[J]. Tribology Letters, 2005, 19(3):151-161.
[2] 张嗣伟. 关于我国摩擦学发展方向的探讨[J]. 摩擦学学报, 2001, 21(5):321-323. ZHANG S W. An approach to the developing ways of tribology in China[J]. Tribology, 2001, 21(5):321-323. (in Chinese)
[3] 温诗铸, 黄平. 摩擦学原理[M]. 第2版. 北京:清华大学出版社, 2002. WEN S Z, HUANG P. Principles of tribology[M]. 2nd ed. Beijing:Tsinghua University Press, 2002. (in Chinese)
[4] 王国彪, 赖一楠, 黄海鸿, 等. 机械工程学科2012年度科学基金管理工作综述[J]. 中国机械工程, 2013, 24(1):66-72. WANG G B, LAI Y N, HUANG H H, et al. Review on fund management of mechanical engineering discipline of NSFC in 2012[J]. China Mechanical Engineering, 2013, 24(1):66-72. (in Chinese)
[5] HIRANO M, SHINJO K. Atomistic locking and friction[J]. Physical Review B, 1990, 41(17):11837-11851.
[6] ERDEMIR A, MARTIN J M. Superlubricity[M]. Amsterdam:Elsevier, 2007.
[7] SUN C Q, SUN Y, NI Y G, et al. Coulomb repulsion at the nanometer-sized contact:A force driving superhydrophobicity, superfluidity, superlubricity, and supersolidity[J]. The Journal of Physical Chemistry C, 2009, 113(46):20009-20019.
[8] HIRANO M, SHINJO K, KANEKO R, et al. Observation of superlubricity by scanning tunneling microscopy[J]. Physical Review Letters, 1997, 78(8):1448-1451.
[9] MATE C M, MCCLELLAND G M, ERLANDSSON R, et al. Atomic-scale friction of a tungsten tip on a graphite surface[J]. Physical Review Letters, 1987, 59(17):1942-1945.
[10] GONG Z B, SHI J, ZHANG B, et al. Graphene nano scrolls responding to superlow friction of amorphous carbon[J]. Carbon, 2017, 116:310-317.
[11] DONNET C, MARTIN J M, LE MOGNE T, et al. Super-low friction of MoS2 coatings in various environments[J]. Tribology International, 1996, 29(2):123-128.
[12] CHHOWALLA M, AMARATUNGA G A J. Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear[J]. Nature, 2000, 407(6801):164-167.
[13] 陈晓欢. 面接触条件下聚乙二醇的水基润滑特性研究[D]. 大连:大连海事大学, 2016. CHEN X H. Research on water based lubricating properties of polyethylene glycol as additive in surface contact[D]. Dalian:Dalian Maritime University, 2016. (in Chinese)
[14] GE X Y, LI J J, WANG H D, et al. Macroscale superlubricity under extreme pressure enabled by the combination of graphene-oxide nanosheets with ionic liquid[J]. Carbon, 2019, 151:76-83.
[15] 李津津, 雒建斌. 人类摆脱摩擦困扰的新技术——超滑技术[J]. 自然杂志, 2014, 36(4):248-255. LI J J, LUO J B. New technology for human getting rid of friction:Superlubricity[J]. Chinese Journal of Nature, 2014, 36(4):248-255. (in Chinese)
[16] ZENG Q F, YU F, DONG G N. Superlubricity behaviors of Si3N4/DLC films under PAO oil with nano boron nitride additive lubrication[J]. Surface and Interface Analysis, 2013, 45(8):1283-1290.
[17] ZENG Q F, DONG G N, MARTIN J M. Green superlubricity of nitinol 60 alloy against steel in presence of castor oil[J]. Scientific Reports, 2016, 6:29992.
[18] ZHAO F, LI H X, JI L, et al. Superlow friction behavior of Si-doped hydrogenated amorphous carbon film in water environment[J]. Surface and Coatings Technology, 2009, 203(8):981-985.
[19] GE X Y, LI J J, LUO R, et al. Macroscale superlubricity enabled by the synergy effect of graphene-oxide nanoflakes and ethanediol[J]. ACS Applied Materials & Interfaces, 2018, 10(47):40863-40870.
[20] HAN T Y, ZHANG C H, LUO J B. Macroscale superlubricity enabled by hydrated alkali metal ions[J]. Langmuir, 2018, 34(38):11281-11291.
[21] GE X Y, LI J J, ZHANG C H, et al. Superlubricity and antiwear properties of in situ-formed ionic liquids at ceramic interfaces induced by tribochemical reactions[J]. ACS Applied Materials & Interfaces, 2019, 11(6):6568-6574.
[22] GE X Y, LI J J, ZHANG C H, et al. Liquid superlubricity of polyethylene glycol aqueous solution achieved with boric acid additive[J]. Langmuir, 2018, 34(12):3578-3587.
[23] WANG W, XIE G X, LUO J B. Superlubricity of black phosphorus as lubricant additive[J]. ACS Applied Materials & Interfaces, 2018, 10(49):43203-43210.
[24] LI J J, ZHANG C H, DENG M M, et al. Investigations of the superlubricity of sapphire against ruby under phosphoric acid lubrication[J]. Friction, 2014, 2(2):164-172.
[25] ZHANG C X, LIU Z F, LIU Y H, et al. Novel tribological stability of the superlubricity poly (vinylphosphonic acid)(PVPA) coatings on Ti6Al4V:Velocity and load independence[J]. Applied Surface Science, 2017, 392:19-26.
[26] WANG H D, LIU Y H, LI J J, et al. Investigation of superlubricity achieved by polyalkylene glycol aqueous solutions[J]. Advanced Materials Interfaces, 2016, 3(19):1600531.
[27] LI J J, MA L R, ZHANG S H, et al. Investigations on the mechanism of superlubricity achieved with phosphoric acid solution by direct observation[J]. Journal of Applied Physics, 2013, 114(11):114901.
[28] CHEN Z, LIU Y H, LUO J B. Superlubricity of nanodiamonds glycerol colloidal solution between steel surfaces[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 489:400-406.
[29] CHEN Z, LIU Y H, ZHANG S H, et al. Controllable superlubricity of glycerol solution via environment humidity[J]. Langmuir, 2013, 29(38):11924-11930.
[30] GE X Y, LI J J, ZHANG C H, et al. Superlubricity of 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid induced by tribochemical reactions[J]. Langmuir, 2018, 34(18):5245-5252.
[31] LI K, ZHANG S M, LIU D S, et al. Superlubricity of 1, 3-diketone based on autonomous viscosity control at various velocities[J]. Tribology International, 2018, 126:127-132.
[32] GE X Y, HALMANS T, LI J J, et al. Molecular behaviors in thin film lubrication-Part three:Superlubricity attained by polar and nonpolar molecules[J]. Friction, 2019, 7(6):625-636.
[33] MA W, GONG Z B, GAO K X, et al. Superlubricity achieved by carbon quantum dots in ionic liquid[J]. Materials Letters, 2017, 195:220-223.
[34] TOMIZAWA H, FISCHER T E. Friction and wear of silicon nitride and silicon carbide in water:Hydrodynamic lubrication at low sliding speed obtained by tribochemical wear[J]. ASLE Transactions, 1987, 30(1):41-46.
[35] XU J G, KATO K. Formation of tribochemical layer of ceramics sliding in water and its role for low friction[J]. Wear, 2000, 245(1-2):61-75.
[36] LI J J, ZHANG C H, LUO J B. Superlubricity behavior with phosphoric acid-water network induced by rubbing[J]. Langmuir, 2011, 27(15):9413-9417.
[37] LI J, ZHANG C H, MA L R, et al. Superlubricity achieved with mixtures of acids and glycerol[J]. Langmuir, 2013, 29(1):271-275.
[38] MATTA C, JOLY-POTTUZ L, DE BARROS BOUCHET M I, et al. Superlubricity and tribochemistry of polyhydric alcohols[J]. Physical Review B, 2008, 78(8):085436.
[39] DE BARROS BOUCHET M I, MATTA C, LE-MOGNE T, et al. Superlubricity mechanism of diamond-like carbon with glycerol. Coupling of experimental and simulation studies[J]. Journal of Physics:Conference Series, 2007, 89:012003.
[40] KLEIN J, RAVIV U, PERKIN S, et al. Fluidity of water and of hydrated ions confined between solid surfaces to molecularly thin films[J]. Journal of Physics:Condensed Matter, 2004, 16(45):S5437-S5448.
[41] RAVIV U, KLEIN J. Fluidity of bound hydration layers[J]. Science, 2002, 297(5586):1540-1543.
[42] 瞿亮, 张国亮, 张凤宝. 聚合物刷的合成与应用研究进展[J]. 化学工业与工程, 2005, 22(6):461-466. QU L, ZHANG G L, ZHANG F B. Progress in synthesis and application of polymer brushes[J]. Chemical Industry and Engineering, 2005, 22(6):461-466. (in Chinese)
[43] RØN T, JAVAKHISHVILI I, HVILSTED S, et al. Ultralow friction with hydrophilic polymer brushes in water as segregated from silicone matrix[J]. Advanced Materials Interfaces, 2016, 3(2):1500472.
[44] ZHANG C X, LIU Y H, LIU Z F, et al. Regulation mechanism of salt ions for superlubricity of hydrophilic polymer cross-linked networks on Ti6Al4V[J]. Langmuir, 2017, 33(9):2133-2140.
[45] GE X Y, LI J J, LUO J B. Macroscale superlubricity achieved with various liquid molecules:A review[J]. Frontiers in Mechanical Engineering, 2019, 5:2.
[46] DE BARROS BOUCHET M I, MARTIN J M, AVILA J, et al. Diamond-like carbon coating under oleic acid lubrication:Evidence for graphene oxide formation in superlow friction[J]. Scientific Reports, 2017, 7:46394.
[47] LI J J, ZHANG C H, DENG M M, et al. Superlubricity of silicone oil achieved between two surfaces by running-in with acid solution[J]. RSC Advances, 2015, 5(39):30861-30868.
[48] FUNG Y C, SKALAK R. Biomechanics:Mechanical properties of living tissues[M]. New York:Springer-Verlag, 1981.
[49] ZHANG L, LIU Y H, CHEN Z, et al. Behavior and mechanism of ultralow friction of basil seed gel[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 489:454-460.
[50] ARAD S, RAPOPORT L, MOSHKOVICH A, et al. Superior biolubricant from a species of red microalga[J]. Langmuir, 2006, 22(17):7313-7317.
[51] LI J J, LIU Y H, LUO J B, et al. Excellent lubricating behavior of Brasenia schreberi mucilage[J]. Langmuir, 2012, 28(20):7797-7802.
[52] FORSTER H, FISHER J. The influence of loading time and lubricant on the friction of articular cartilage[C]//Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine, 1996, 210(2):109-119.
[53] KITANO T, ATESHIAN G A, MOW V C, et al. Constituents and pH changes in protein rich hyaluronan solution affect the biotribological properties of artificial articular joints[J]. Journal of Biomechanics, 2001, 34(8):1031-1037.
[54] ESPINOSA T, SANES J, BERMúDEZ M D. New alkylether-thiazolium room-temperature ionic liquid lubricants:Surface interactions and tribological performance[J]. ACS Applied Materials & Interfaces, 2016, 8(28):18631-18639.
[55] BERMAN D, DESHMUKH S A, SANKARANARAYANAN S K R S, et al. Macroscale superlubricity enabled by graphene nanoscroll formation[J]. Science, 2015, 348(6239):1118-1122.
[1] 郭伟成, 廖元太, 张洪玉. 润滑水凝胶涂层研究进展[J]. 清华大学学报(自然科学版), 2024, 64(3): 381-392.
[2] 邱豪楠, 刘威, 唐悦, 王胡军, 郑靖. 仿生超滑涂层研究进展[J]. 清华大学学报(自然科学版), 2024, 64(3): 393-408.
[3] 彭业萍, 孔德宇, 庄溶润, 王松, 曹广忠. 人工关节组合界面的磨损行为研究进展[J]. 清华大学学报(自然科学版), 2024, 64(3): 409-420.
[4] 黄秀玲, 郑晔, 赖卫国, 朱俊俊, 华子恺. 人工韧带体外摩擦磨损测量方法[J]. 清华大学学报(自然科学版), 2024, 64(3): 432-441.
[5] 岑佳佳, 张德坤, 陈琴, 张欣悦, 冯存傲, 冯海燕, 陈凯. 滑液组分对“软-软”配副关节材料摩擦学行为的影响[J]. 清华大学学报(自然科学版), 2024, 64(3): 454-470.
[6] 王钦, 贺迪, 桂良进, 胡智宇, 彭金, 范子杰. 考虑系统变形的驱动桥准双曲面齿轮啮合效率计算方法[J]. 清华大学学报(自然科学版), 2024, 64(1): 33-43.
[7] 张守胜, 庄滕飞, 方星星, 朱华, 唐玮. 条形状精细纹理的触觉感知深度识别阈值[J]. 清华大学学报(自然科学版), 2024, 64(1): 135-145.
[8] 武诗睿, 吴丹. 基于摩擦力矩—速度曲线特定区域形状分析的LuGre摩擦参数辨识[J]. 清华大学学报(自然科学版), 2022, 62(9): 1500-1507.
[9] 何鑫, 薛瑞, 郑星, 张骞, 龚建良. 边界层燃烧在超燃冲压发动机内的摩擦减阻特性[J]. 清华大学学报(自然科学版), 2022, 62(3): 562-572.
[10] 李新新, 杜祥宁, 李远哲, 曹恒超, 田煜. 基于AVL-EXCITE的发动机连杆轴承空化特性模拟[J]. 清华大学学报(自然科学版), 2022, 62(3): 385-390,399.
[11] 李娜, 徐学锋. 晶向对摩擦发光影响的实验研究及机理分析[J]. 清华大学学报(自然科学版), 2022, 62(3): 470-475.
[12] 吴影, 刘艳, 陈文静, 陈辉. 铁基激光熔敷层搭接与非搭接区摩擦性能[J]. 清华大学学报(自然科学版), 2022, 62(3): 476-481.
[13] 张长, 田继胤, 郭丹, 牛青波. 考虑热膨胀影响的脂润滑高速角接触球轴承热特性分析[J]. 清华大学学报(自然科学版), 2022, 62(3): 482-492.
[14] 杨智勇, 李武鹏, 张宇, 李志强, 李卫京. 搅拌头结构对搅拌摩擦焊缺陷形成机制的影响[J]. 清华大学学报(自然科学版), 2022, 62(2): 374-384.
[15] 孙悦, 何可, 张执南. 多源信息拟合摩擦系数的回归集成模型[J]. 清华大学学报(自然科学版), 2022, 62(12): 1980-1988.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn