Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (9): 707-714    DOI: 10.16511/j.cnki.qhdxxb.2020.25.024
  专题:能源地下结构与工程 本期目录 | 过刊浏览 | 高级检索 |
清华热力学岩土模型与能源地下结构有限元模拟
程晓辉1, 赵乃峰1, 王浩2, 张志超1,3
1. 清华大学 土木工程系, 北京 100084, 中国;
2. 新加坡南洋理工大学 土木与环境工程学院, 新加坡 639798, 新加坡;
3. 重庆大学 土木工程学院, 重庆 400045, 中国
Tsinghua thermodynamic soil model for simulating energy engineering projects
CHENG Xiaohui1, ZHAO Naifeng1, WANG Hao2, ZHANG Zhichao1,3
1. Department of Civil Engineering, Tsinghua University, Beijing 100084, China;
2. School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore;
3. School of Civil Engineering, Chongqing University, Chongqing 400045, China
全文: PDF(1508 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 能源桩是利用建筑桩基础与周围岩土体进行热交换的新型结构和换热构件,具有高效开发利用浅层地温能和节省地下空间等优点。由于对桩周岩土体温度-应力耦合行为认识的匮乏,能源桩的设计和安全服役面临新的挑战。该文首先总结了饱和黏土温度-应力耦合的体积变化规律,简要评述了现有岩土热力耦合本构模型存在的问题;重点阐述了清华热力学岩土本构模型(Tsinghua thermodynamical soil model,TTS模型)的理论框架,给出了模型参数的物理意义和标定方法;最后开展了饱和高岭土升温排水试验和能源基础的有限元分析。基于TTS模型的有限元分析结果表明:升温过程中,能源基础的承载能力有微小降低,界面正应力、切应力均发生衰减;随着基础深度的增大,界面切应力随温度升高呈非线性增加,而界面正应力变化较小;升温降温后,桩土界面的接触减弱,基础沉降有所增大、承载能力有一定降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程晓辉
赵乃峰
王浩
张志超
关键词 能源地下结构热蠕变试验非平衡态热力学温度应力耦合本构模型    
Abstract:Energy piles utilize pile foundations to exchange heat with the surrounding rock and soil to facilitate efficient use of shallow geothermal energy supplies. An energy pile design is given that improves the thermo-mechanical coupling of the soil with the energy pile. Specifically, this paper summaries the influences of temperature and stress on the volume change of saturated clays with evaluations of the thermo-mechanical constitutive models in the literature. A Tsinghua thermodynamic soil (TTS) model is then used in finite element simulations of the thermo-mechanical behavior of elevated temperature oedometer tests of Kaolin clay with an energy pile. The predictions show that heating reduces the bearing capacity of the energy pile foundation, the interfacial normal stress and the shear stress. The results also show that the interfacial shear stress increases with increasing temperature and foundation depth, while the interfacial normal stress changes little. Cooling reduces the energy pile-soil interface interactions, increases foundation settling and reduces the bearing capacity.
Key wordsenergy underground structure    thermal creep test    non-equilibrium thermodynamics    thermo-mechanical coupling    constitutive model
收稿日期: 2020-02-25      出版日期: 2020-07-04
引用本文:   
程晓辉, 赵乃峰, 王浩, 张志超. 清华热力学岩土模型与能源地下结构有限元模拟[J]. 清华大学学报(自然科学版), 2020, 60(9): 707-714.
CHENG Xiaohui, ZHAO Naifeng, WANG Hao, ZHANG Zhichao. Tsinghua thermodynamic soil model for simulating energy engineering projects. Journal of Tsinghua University(Science and Technology), 2020, 60(9): 707-714.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.25.024  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I9/707
  
  
  
  
  
  
  
[1] 桂树强, 程晓辉. 能源桩换热过程中结构响应原位试验研究[J]. 岩土工程学报, 2014, 36(6):1087-1094. GUI S Q, CHENG X H. In-situ tests on structural responses of energy piles during heat exchanging process[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6):1087-1094. (in Chinese)
[2] LALOUI L, DI DONNA A. Energy geostructures:Innovation in underground engineering[M]. London:ISTE, 2013.
[3] AMIS T, ROBINSON C A W, WONG S. Integrating geothermal loops into the diaphragm walls of the Knightsbridge Palace Hotel project[C]//Proceedings of the 11th DFI/EFFC International Conference on Geotechnical Challenges in Urban Regeneration. HAWTHOME N J, KENT M I. Deep Foundation Institute. London, Britain:European Federation of Foundation Contractors, 2010.
[4] FRANZIUS J N, PRALLE N. Turning segmental tunnels into sources of renewable energy[J]. Proceedings of the Institution of Civil Engineers-Civil Engineering, 2011, 164(1):35-40.
[5] FRODL S, FRANZIUS J N, BARTL T. Design and construction of the tunnel geothermal system in Jenbach[J]. Geomechanics and Tunnelling, 2010, 3(5):658-668.
[6] 刘汉龙, 孔纲强, 吴宏伟. 能量桩工程应用研究进展及PCC能量桩技术开发[J]. 岩土工程学报, 2014, 36(1):176-181. LIU H L, KONG G Q, WU H W. Applications of energy piles and technical development of PCC energy piles[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1):176-181. (in Chinese)
[7] 江强强, 焦玉勇, 骆进, 等. 能源桩传热与承载特性研究现状及展望[J]. 岩土力学, 2019, 40(9):3351-3362, 3372. JIANG Q Q, JIAO Y Y, LUO J, et al. Review and prospect on heat transfer and bearing performance of energy piles[J]. Rock and Soil Mechanics, 2019, 40(9):3351-3362, 3372. (in Chinese)
[8] Ground Source Heat Pump Association (GSHPA). Thermal pile design, installation & materials standards[M]. Milton Keynes, UK:National Energy Centre, 2013.
[9] PARRIAUX A, TACHER L. Utilisation de la chaleur du sol par des ouvrages de fondation et de soutènement en béton. In Guide Pour la Conception, la Réalisation et la Maintenance[R]. Zurich, Switzerland:Architeets, 2005.
[10] 中华人民共和国住房与城乡建设部. 桩基地热能利用技术标准:JGJ/T 438-2018[S]. 北京:中国建筑工业出版社, 2018. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical standard for utilization of geothermal energy through piles:JGJ/T 438-2018[S]. Beijing:China Architecture & Building Press, 2018. (in Chinese)
[11] ABUEL-NAGA H M, BERGADO D T, BOUAZZA A, et al. Volume change behaviour of saturated clays under drained heating conditions:Experimental results and constitutive modeling[J]. Canadian Geotechnical Journal, 2007, 44(8):942-956.
[12] DI DONNA A, LALOUI L. Response of soil subjected to thermal cyclic loading:Experimental and constitutive study[J]. Engineering Geology, 2015, 190:65-76.
[13] SULTAN N, DELAGE P, CUI Y J. Temperature effects on the volume change behaviour of Boom clay[J]. Engineering Geology, 2002, 64(2-3):135-145.
[14] MONFARED M, SULEM J, DELAGE P, et al. A laboratory investigation on thermal properties of the opalinus claystone[J]. Rock Mechanics and Rock Engineering, 2011, 44(6):735.
[15] 白冰, 赵成刚. 温度对粘性土介质力学特性的影响[J].岩土力学, 2003, 24(4):533-537. BAI B, ZHAO C G. Temperature effects on mechanical characteristics of clay soils[J]. Rock and Soil Mechanics, 2003, 24(4):533-537. (in Chinese)
[16] 费康, 戴迪, 付长郓. 热-力耦合作用下黏性土体积变形特性试验研究[J]. 岩土工程学报, 2019, 41(9):1752-1758. FEI K, DAI D, FU C Y. Experimental study on volume change behavior of clay subjected to thermo-mechanical loads[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9):1752-1758. (in Chinese)
[17] PUSCH R. Permanent crystal lattice contraction, a primary mechanism in thermally induced alteration of Na bentonite[J]. MRS Online Proceedings Library, 1986, 84:791-802. DOI:1557/PROC-84-791.
[18] LALOUI L. Thermo-mechanical behaviour of soils[J]. Revue Francaise de Génie Civil, 2001, 5(6):809-843.
[19] ZHANG S, LENG W M, ZHANG F, et al. A simple thermo-elastoplastic model for geomaterials[J]. International Journal of Plasticity, 2012, 34:93-113.
[20] XIONG Y L, ZHANG S, YE G L, et al. Modification of thermo-elasto-viscoplastic model for soft rock and its application to THM analysis of heating tests[J]. Soils and Foundations, 2014, 54(2):176-196.
[21] CUI Y J, SULTAN N, DELAGE P. A thermomechanical model for saturated clays[J]. Canadian Geotechnical Journal, 2000, 37(3):607-620.
[22] LALOUI L, FRANCOIS B. ACMEG-T:Soil thermoplasticity model[J]. Journal of Engineering Mechanics, 2009, 135(9):932-944.
[23] 姚仰平, 杨一帆, 牛雷. 考虑温度影响的UH模型[J]. 中国科学:技术科学, 2011, 41(2):158-169.YAO Y P, YANG Y F, NIU L. UH model considering temperature effect[J]. Science China Technological Sciences, 2011, 54(1):190-202. (in Chinese)
[24] DI DONNA A, LORIA A F R, LALOUI L. Numerical study of the response of a group of energy piles under different combinations of thermo-mechanical loads[J]. Computers and Geotechnics, 2016, 72:126-142.
[25] SURYATRIYASTUTI M E, MROUEH H, BURLON S. Understanding the temperature-induced mechanical behaviour of energy pile foundations[J]. Renewable and Sustainable Energy Reviews, 2012, 16(5):3344-3354.
[26] LORIA A F R, LALOUI L. Thermally induced group effects among energy piles[J]. Géotechnique, 2017, 67(5):374-393. DOI:10.1680/jgeot.16.P.039.
[27] ZHANG Z, CHENG X H. A fully coupled THM model based on a non-equilibrium thermodynamic approach and its application[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(4):527-554.
[28] ZHANG Z C, CHENG X H. A thermodynamic constitutive model for undrained monotonic and cyclic shear behavior of saturated soils[J]. Acta Geotechnica, 2015, 10(6):781-796.
[29] ZHANG Z C, CHENG X H. A thermo-mechanical coupled constitutive model for clay based on extended granular solid hydrodynamics[J]. Computers and Geotechnics, 2016, 80:373-382.
[30] 邵玉娴. 粘性土工程性质的温度效应试验研究[D]. 南京:南京大学, 2011. SHAO Y X. Experimental study on temperature effect on engineering properties of clayey soils[D]. Nanjing:Nanjing University, 2011. (in Chinese)
[31] JIANG Y M, LIU M. Granular solid hydrodynamics[J]. Granular Matter, 2009, 11(3):139-156.
[32] CEKEREVAC C, LALOUI L, VULLIET L. A novel triaxial apparatus for thermo-mechanical testing of soils[J]. Geotechnical Testing Journal, 2005, 28(2):161-170.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn