Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (12): 1389-1396    DOI: 10.16511/j.cnki.qhdxxb.2020.25.038
  专题:能源动力领域传热与热系统研究 本期目录 | 过刊浏览 | 高级检索 |
光谱选择透过性对聚光太阳能热化学循环性能的影响
林鹏翥1,3, 娄佳慧1,2, 李建兰3, 郝勇1,2
1. 中国科学院工程热物理研究所, 北京 100190;
2. 中国科学院大学, 北京 100049;
3. 华中科技大学 能源与动力工程学院, 武汉 430074
Effect of spectral-selectivity on the performance of thermochemical cycling driven by concentrated solar energy
LIN Pengzhu1,3, LOU Jiahui1,2, LI Jianlan3, HAO Yong1,2
1. Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan 430074, China
全文: PDF(5018 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 太阳能高温热化学反应分解水或二氧化碳是制取太阳能燃料的重要途径,通常以热化学循环的方式进行。鉴于太阳能热化学循环反应腔体温度显著低于太阳表面温度,可以通过光谱选择性透过膜抑制腔体向环境的二次辐射,从而达到显著降低不可逆损失、提升集热效率、降低聚光集热成本的目的。该文对选择性透过膜的特征参数截止波长及其对热化学循环性能的影响进行了系统的研究,进而在氧化铈热化学循环分解二氧化碳实验基础上,分析了选择性透过膜对太阳能-燃料化学能效率的影响。最后,对聚光集热成本相对于选择性透过膜成本的敏感性进行了讨论。结果表明,对于最高温度为1 773 K的太阳能热化学循环,最佳截止波长为1 350 nm,与太阳能光谱(AM1.5)的水蒸气、二氧化碳吸收峰重合。选择性透过膜可以将黑体腔理论集热效率提升34.7%~85.2%,可以较为明显地提升热化学循环分解二氧化碳的太阳能-燃料化学能效率上限。选择性透过膜对缩短还原反应的升温时间和减少辐射损失分别为13.7%和36.7%。当选择性透过膜的单位成本低于碟式聚光镜的单位成本的330倍时,使用选择性透过膜可以有效降低聚光集热成本。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林鹏翥
娄佳慧
李建兰
郝勇
关键词 聚光太阳能热化学循环光谱选择性透过膜太阳能燃料效率    
Abstract:Splitting H2O or CO2 via solar-driven thermochemical redox cycles is important for solar fuel production. Since the reactor chamber temperature in thermochemical redox cycles is much lower than the surface temperature of the sun, secondary radiation from the reactor chamber to the ambient can be suppressed by spectral-selective transmissive coatings. These significantly reduce the irreversible losses, improve the solar thermal collection efficiency, and reduce the solar thermal collection cost. The cutoff wavelength is a key characteristic parameter of spectral-selective transmissive coatings which significantly affect the thermochemical performance of solar-driven thermochemical cycling. This study investigates the effect of the spectral-selective transmissive coatings on the solar-to-fuel efficiency based on experimental data for thermochemical splitting of CO2 using reticulated porous ceria. This work also discusses the economic impact of the spectral-selective transmissive coatings on the solar thermal collector cost. The results show that for a solar-driven thermochemical redox cycle with a high temperature of 1 773 K, the optimal cutoff wavelength is 1 350 nm, which coincides with the steam and CO2 absorption peaks in the solar spectrum (AM1.5). Spectral-selective transmissive coatings can increase the theoretical solar thermal collection efficiency of a blackbody cavity by 34.7%~85.2% and can significantly enhance the upper limit of the solar-to-fuel energy efficiency. The coatings can reduce the reduction half-reaction heating time by 13.7% and radiation losses by 36.7%. Finally, this work analyzes the economic impact of the spectral-selective transmissive coating on the solar thermal collector cost. The spectral-selective transmissive coatings can effectively reduce the solar thermal collector cost when the unit cost of the spectral-selective transmissive coatings is 330 times less than the cost of a dish concentrator.
Key wordsconcentrated solar energy    thermochemical cycle    spectral-selective transmissive coating    solar fuel    efficiency
收稿日期: 2020-05-30      出版日期: 2021-12-11
基金资助:国家自然科学基金资助项目(51676189,51590904);中国科学院前沿科学重点研究项目(QYZDY-SSW-JSC036)
通讯作者: 郝勇,研究员,E-mail:haoyong@iet.cn     E-mail: haoyong@iet.cn
引用本文:   
林鹏翥, 娄佳慧, 李建兰, 郝勇. 光谱选择透过性对聚光太阳能热化学循环性能的影响[J]. 清华大学学报(自然科学版), 2021, 61(12): 1389-1396.
LIN Pengzhu, LOU Jiahui, LI Jianlan, HAO Yong. Effect of spectral-selectivity on the performance of thermochemical cycling driven by concentrated solar energy. Journal of Tsinghua University(Science and Technology), 2021, 61(12): 1389-1396.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.25.038  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I12/1389
  
  
  
  
  
  
  
  
  
  
  
[1] LEWIS N S. Research opportunities to advance solar energy utilization[J]. Science, 2016, 351(6271):aad1920.
[2] ROMERO M, STEINFELD A. Concentrating solar thermal power and thermochemical fuels[J]. Energy & Environmental Science, 2012, 5(11):9234-9245.
[3] SHIH C F, ZHANG T, LI J H, et al. Powering the future with liquid sunshine[J]. Joule, 2018, 2(10):1925-1949.
[4] STEINFELD A. Solar thermochemical production of hydrogen-A review[J]. Solar Energy, 2005, 78(5):603-615.
[5] RAO C N R, DEY S. Solar thermochemical splitting of water to generate hydrogen[J]. Proceedings of the National Academy of Sciences, 2017, 114(51):13385-13393.
[6] HAO Y, STEINFELD A. Fuels from water, CO2 and solar energy[J]. Science Bulletin, 2017, 62(16):1099-1101.
[7] CHUEH W C, FALTER C, ABBOTT M, et al. High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria[J]. Science, 2010, 330(6012):1797-1801.
[8] FURLER P, SCHEFFE J R, STEINFELD A. Syngas production by simultaneous splitting of H2O and CO2 via ceria redox reactions in a high-temperature solar reactor[J]. Energy & Environmental Science, 2012, 5(3):6098-6103.
[9] FURLER P, SCHEFFE J, MARXER D, et al. Thermochemical CO2 splitting via redox cycling of ceria reticulated foam structures with dual-scale porosities[J]. Physical Chemistry Chemical Physics, 2014, 16(22):10503-10511.
[10] MARXER D, FURLER P, TAKACS M, et al. Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiency[J]. Energy & Environmental Science, 2017, 10(5):1142-1149.
[11] FURLER P, STEINFELD A. Heat transfer and fluid flow analysis of a 4 kW solar thermochemical reactor for ceria redox cycling[J]. Chemical Engineering Science, 2015, 137:373-383.
[12] ZANGANEH G, PEDRETTI A, ZAVATTONI S, et al. Packed-bed thermal storage for concentrated solar power-Pilot-scale demonstration and industrial-scale design[J]. Solar Energy, 2012, 86(10):3084-3098.
[13] GAO Y, WANG Z M, DING D, et al. Novel methods to harness solar radiation for advanced energy applications[J]. ES Energy & Environment, 2019, 5:1-7.
[14] CHOPRA K L, REDDY G B. Optically selective coatings[J]. Pramana, 1986, 27(1-2):193-217.
[15] JANICKI V, GÄBLER D, WILBRANDT S, et al. Deposition and spectral performance of an inhomogeneous broadband wide-angular antireflective coating[J]. Applied Optics, 2006, 45(30):7851-7857.
[16] HU P, LIU Y, ZHANG Q, et al. Thermodynamic analysis on medium-high temperature solar thermal systems with selective coatings[J]. Science China Technological Sciences, 2013, 56(12):3137-3143.
[17] JIN J, WEI X, LIU M K, et al. A solar methane reforming reactor design with enhanced efficiency[J]. Applied Energy, 2018, 226:797-807.
[18] RÖGER M, RICKERS C, UHLIG R, et al. Infrared-reflective coating on fused silica for a solar high-temperature receiver[J]. Journal of Solar Energy Engineering, 2009, 131(2):021004.
[19] 金健. 聚光太阳能燃料转化机理研究[D]. 北京:中国科学院大学(中国科学院工程热物理研究所), 2019. JIN J. Study on concentrated solar-driven thermochemical fuel production[D]. Beijing:University of Chinese Academy of Sciences, Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2019. (in Chinese)
[20] GIOSTRI A, MACCHI E. An advanced solution to boost sun-to-electricity efficiency of parabolic dish[J]. Solar Energy, 2016, 139:337-354.
[1] 王东璞, 王子奇, 刘爽, 蒋林峰, 易磊, 孙超. 复杂边界和极端条件对单相和多相湍流结构和输运的影响[J]. 清华大学学报(自然科学版), 2022, 62(4): 758-773.
[2] 徐建江, 陈文夫, 谭尧升, 高世奎, 周天刚, 周孟夏, 刘春风, 梁程, 李向前. 特高拱坝混凝土运输智能化关键技术与应用[J]. 清华大学学报(自然科学版), 2021, 61(7): 768-776.
[3] 王言然, 孔纲强, 沈扬, 孙智文, 王新越, 肖涵宇. 热干扰下能量桩热力特性现场试验研究[J]. 清华大学学报(自然科学版), 2020, 60(9): 733-739.
[4] 谷庆, 袁立强, 赵争鸣, 段任之, 陆子贤. 基于三重移相控制的双有源桥DC-DC变换器性能综合优化[J]. 清华大学学报(自然科学版), 2019, 59(10): 785-795.
[5] 刘振, 李清海, 朱群益, 谭中超, 张衍国. 鼓泡塔中SO2和CO2对钴氨络合物脱硝效率的影响[J]. 清华大学学报(自然科学版), 2018, 58(9): 814-820.
[6] 白召乐, 周琦, 杨楠, 刘锋, 杨中建, 陈宝维, 王建龙. 基于波长位移光纤的232Th+ZnS(Ag)闪烁体中子探测器[J]. 清华大学学报(自然科学版), 2018, 58(6): 558-562.
[7] 陈皇卿, 钟晓峰, 王京. 基于能效的单频网广播小区部署优化算法[J]. 清华大学学报(自然科学版), 2018, 58(2): 170-174.
[8] 刘德天, 傅旭东, 王光谦. CFD-DEM耦合计算中的体积分数算法[J]. 清华大学学报(自然科学版), 2017, 57(7): 720-727.
[9] 王力, 杜强, 康克军, 岳骞. 载钆液闪探测器的稳定性测试与探测效率刻度[J]. 清华大学学报(自然科学版), 2017, 57(7): 768-773.
[10] 吴泉源, 彭灿, 郑毅, 卜俊丽. 适用于海量数据应用的多维Hash表结构[J]. 清华大学学报(自然科学版), 2017, 57(6): 586-590.
[11] 周树桥, 李铎. 双冗余控制器的失效状态分析及面向高可靠度的设计[J]. 清华大学学报(自然科学版), 2017, 57(4): 399-404.
[12] 张红, 李林峻, 李维娜. 基于实验经济学的中介价格信息掌握对二手房议价效率影响[J]. 清华大学学报(自然科学版), 2017, 57(4): 421-425,431.
[13] 刘烨, 田富强. 基于社会水文耦合模型的干旱区节水农业水土政策比较[J]. 清华大学学报(自然科学版), 2016, 56(4): 365-372.
[14] 王志如, 苏国锋, 梁作论. 基于信息传递效率的地铁网络小世界特性评价[J]. 清华大学学报(自然科学版), 2016, 56(4): 411-416.
[15] 向柏祥, 赵从振, 丁艳军, 马润田, 吕俊复. 烟气酸露点的测量和预测模型分析[J]. 清华大学学报(自然科学版), 2015, 55(10): 1117-1124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn