Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (12): 1341-1352    DOI: 10.16511/j.cnki.qhdxxb.2020.25.044
  专题:能源动力领域传热与热系统研究 本期目录 | 过刊浏览 | 高级检索 |
航天飞行器热防护相变发汗冷却研究进展
胥蕊娜, 李晓阳, 廖致远, 胡皓玮, 祝银海, 姜培学
清华大学 能源与动力工程系, 热科学与动力工程教育部重点实验室, 北京 100084
Research progress in transpiration cooling with phase change
XU Ruina, LI Xiaoyang, LIAO Zhiyuan, HU Haowei, ZHU Yinhai, JIANG Peixue
Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(15534 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 随着航天飞行器飞行速度与时间的提高,气动、燃烧等带来的超高温、大热流使得飞行器部件温度远超材料耐温极限,高效可靠的热防护技术成为制约航天飞行器发展的重要瓶颈之一。发汗冷却技术自20世纪40年代提出以来,被认为是一种具有极高冷却效率的主动热防护技术,可实现航天飞行器超高温/大热流表面的有效热防护。该文对国际、国内主要研究团队和作者研究团队近年来相变发汗冷却的研究进行了综述,阐述了亚声速和超声速主流中相变发汗冷却流动与换热规律,提出了仿生自抽吸自适应相变发汗冷却方法及其优化结构,给出了发汗冷却在航天飞行器典型热端结构中的应用和优化方法。结合先进材料的发展探索非均匀热流、过载等条件下相变发汗冷却的流动换热规律是未来相变发汗冷却发展的重要方向,从而为航天飞行器跨越式发展提供可靠的技术支持。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胥蕊娜
李晓阳
廖致远
胡皓玮
祝银海
姜培学
关键词 热防护发汗冷却相变自抽吸优化    
Abstract:With the increasing speeds and flight times of aerospace vehicles, the high heat fluxes caused by the aerodynamics and combustion have led to aircraft component temperatures that far exceed the material limits. Efficient, reliable thermal protection methods are then crucial in aerospace components. Transpiration cooling is an efficient active thermal protection method first developed in the 1940s that is used for thermal protection of conventional materials on ultra-high temperature/heat flux surfaces of aerospace vehicles. This paper reviews international and domestic research including that of the authors' team on transpiration cooling with phase change in the last several years. The flow and heat transfer mechanisms of transpiration cooling with phase change for subsonic and supersonic mainstream flows are explained. The biomimetic self-pumping and self-adaptive transpiration cooling method and its optimal structures are also presented. This paper also describes the optimization of transpiration cooling in typical thermal structures of aerospace vehicles. Advanced materials will be combined with transpiration cooling with phase change with non-uniform heat fluxes and extremely high temperatures in future designs to provide reliable high speed aerospace vehicles.
Key wordsthermal protection    transpiration cooling    phase change    self-pumping    optimization
收稿日期: 2020-08-20      出版日期: 2021-12-11
基金资助:国家自然科学基金创新研究群体项目(51621062);国家自然科学基金优秀青年基金项目(51722602)
通讯作者: 姜培学,教授,E-mail:jiangpx@tsinghua.edu.cn     E-mail: jiangpx@tsinghua.edu.cn
引用本文:   
胥蕊娜, 李晓阳, 廖致远, 胡皓玮, 祝银海, 姜培学. 航天飞行器热防护相变发汗冷却研究进展[J]. 清华大学学报(自然科学版), 2021, 61(12): 1341-1352.
XU Ruina, LI Xiaoyang, LIAO Zhiyuan, HU Haowei, ZHU Yinhai, JIANG Peixue. Research progress in transpiration cooling with phase change. Journal of Tsinghua University(Science and Technology), 2021, 61(12): 1341-1352.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.25.044  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I12/1341
  
  
  
  
  
  
  
  
  
  
[1] JACKSON T A, EKLUND D R, FINK A J. High speed propulsion:Performance advantage of advanced materials[J]. Journal of Materials Science, 2004, 39(19):5905-5913.
[2] SUTTON G P, BIBLARZ O. Rocket propulsion elements[M]. 9th ed. New Jersey:John Wiley & Sons, 2017.
[3] POLEZHAEV Y V. Will there or will there not be a hypersonic airplane?[J]. Journal of Engineering Physics and Thermophysics, 2000, 73(1):3-8.
[4] DUWEZ P, WHEELER JR H L. Experimental study of cooling by injection of a fluid through a porous material[J]. Journal of the Aeronautical Sciences, 1948, 15(9):509-521.
[5] HUANG Z, ZHU Y H, JIANG P X, et al. Investigation of a porous transpiration-cooled strut injector[J]. Journal of Propulsion and Power, 2015, 31(1):278-285.
[6] GLASS D E, DILLEY A D, KELLY H N. Numerical analysis of convection/transpiration cooling[J]. Journal of Spacecraft and Rockets, 2001, 38(1):15-20.
[7] KUNTZ R J, BLUBAUGH A L, LABOTZ R J, et al. Transpiration-cooled devices:3585800[P]. 1971-06-22.
[8] 刘伟强, 陈启智, 吴宝元. 典型结构的层板发汗冷却推力室传热特性的推算方法[J]. 推进技术, 1998, 19(6):15-19. LIU W Q, CHEN Q Z, WU B Y. Calculation method of heat transfer in platelet transpiration cooled thrust with typical structure[J]. Journal of Propulsion Technology, 1998, 19(6):15-19. (in Chinese)
[9] 丁亮. 烧结多孔介质材料发汗冷却的研究[D]. 合肥:中国科学技术大学, 2012. DING L. Investigation on transpiration cooling within sintered porous material[D]. Hefei:University of Science and Technology of China, 2012. (in Chinese)
[10] LIU Y Q, JIANG P X, XIONG Y B, et al. Experimental and numerical investigation of transpiration cooling for sintered porous flat plates[J]. Applied Thermal Engineering, 2013, 50(1):997-1007.
[11] 熊宴斌. 超声速主流条件发汗冷却的流动和传热机理研究[D]. 北京:清华大学, 2013. XIONG Y B. Study of the mechanism of flow and heat transfer on supersonic transpiration cooling[D]. Beijing:Tsinghua University, 2013. (in Chinese)
[12] ZHU Y H, JIANG P X, SUN J G, et al. Injector head transpiration cooling coupled with combustion in H2/O2 subscale thrust chamber[J]. Journal of Thermophysics and Heat Transfer, 2013, 27(1):42-51.
[13] BÖHRK H. Transpiration-cooled hypersonic flight experiment:Setup, flight measurement, and reconstruction[J]. Journal of Spacecraft and Rockets, 2015, 52(3):674-683.
[14] KÖNIG V, ROM M, MVLLER S, et al. Numerical and experimental investigation of transpiration cooling with carbon/carbon characteristic outflow distributions[J]. Journal of Thermophysics and Heat Transfer, 2019, 33(2):449-461.
[15] PROKEIN D, VON WOLFERSDORF J, BOEHRK H. Analysis of anisotropy effects for transpiration cooled CMC leading edges using OpenFOAM[C]//20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Glasgow, Scotland:AIAA, 2015.
[16] VAN FOREEST A, SIPPEL M, GVLHAN A, et al. Transpiration cooling using liquid water[J]. Journal of Thermophysics and Heat Transfer, 2009, 23(4):693-702.
[17] HUANG G, ZHU Y H, LIAO Z Y, et al. Experimental investigation of transpiration cooling with phase change for sintered porous plates[J]. International Journal of Heat and Mass Transfer, 2017, 114:1201-1213.
[18] WANG J H, ZHAO L J, WANG X C, et al. An experimental investigation on transpiration cooling of wedge shaped nose cone with liquid coolant[J]. International Journal of Heat and Mass Transfer, 2014, 75:442-449.
[19] 黄干, 廖致远, 祝银海, 等. 高温主流条件下相变发汗冷却实验研究[J]. 工程热物理学报, 2017, 38(4):817-821. HUANG G, LIAO Z Y, ZHU Y H, et al. Experimental investigation of transpiration cooling with phase change in high temperature flow[J]. Journal of Engineering Thermophysics, 2017, 38(4):817-821. (in Chinese)
[20] 孟丽燕, 姜培学, 余磊, 等. 发汗冷却中流动与换热的数值模拟[J]. 工程热物理学报, 2002, 23(5):593-595. MENG L Y, JIANG P X, YU L, et al. Numerical simulation of fluid flow and heat transfer in transpiration cooling[J]. Journal of Engineering Thermophysics, 2002, 23(5):593-595. (in Chinese)
[21] 姜培学, 余磊, 任泽霈. 变物性与热辐射对发汗冷却过程的影响规律研究[J]. 航空动力学报, 2004, 19(2):184-190. JIANG P X, YU L, REN Z P. Influence of variable thermophysical properties and thermal radiation on convection heat transfer in transpiration cooling[J]. Journal of Aerospace Power, 2004, 19(2):184-190. (in Chinese)
[22] 余磊, 姜培学, 任泽霈. 发汗冷却换热过程的实验研究与数值模拟[J]. 工程热物理学报, 2005, 26(1):95-97. YU L, JIANG P X, REN Z P. Experimental investigation and numerical simulation of convection heat transfer in transpiration cooling[J]. Journal of Engineering Thermophysics, 2005, 26(1):95-97. (in Chinese)
[23] 孟丽燕, 姜培学, 蒋方帅, 等. 烧结多孔壁面发汗冷却换热的实验研究[J]. 清华大学学报(自然科学版), 2005, 45(11):1537-1539. MENG L Y, JIANG P X, JIANG F S, et al. Experimental investigation of the heat transfer for transpiration cooling through a sintered porous plate[J]. Journal of Tsinghua University (Science and Technology), 2005, 45(11):1537-1539. (in Chinese)
[24] 姜培学, 任泽霈, 张左璠, 等. 液体火箭发动机推力室发汗冷却传热过程的数值模拟(I)数理模型[J]. 推进技术, 1999, 20(3):1-4. JIANG P X, REN Z P, ZHANG Z F, et al. Numerical simulation of heat transfer in transpiration cooled liquid rocket thruster chamber (I) physical mathematical model[J]. Journal of Propulsion Technology, 1999, 20(3):1-4. (in Chinese)
[25] 姜培学, 任泽霈, 张左璠, 等. 液体火箭发动机推力室发汗冷却传热过程的数值模拟(II)数值方法与计算结果[J]. 推进技术, 1999, 20(4):17-21. JIANG P X, REN Z P, ZHANG Z F, et al. Numerical simulation of heat transfer in a transpiration cooled liquid rocket thrust chamber (II) numerical method and results[J]. Journal of Propulsion Technology, 1999, 20(4):17-21. (in Chinese)
[26] LIU Y Q, JIANG P X, JIN S S, et al. Transpiration cooling of a nose cone by various foreign gases[J]. International Journal of Heat and Mass Transfer, 2010, 53(23-24):5364-5372.
[27] HUANG Z, ZHU Y H, XIONG Y B, et al. Investigation of supersonic transpiration cooling through sintered metal porous flat plates[J]. Journal of Porous Media, 2015, 18(11):1047-1057.
[28] JIANG P X, LIAO Z Y, HUANG Z, et al. Influence of shock waves on supersonic transpiration cooling[J]. International Journal of Heat and Mass Transfer, 2019, 129:965-974.
[29] SHI J X, WANG J H. A numerical investigation of transpiration cooling with liquid coolant phase change[J]. Transport in Porous Media, 2011, 87(3):703-716.
[30] HE F, WANG J H. Numerical investigation on critical heat flux and coolant volume required for transpiration cooling with phase change[J]. Energy Conversion and Management, 2014, 80:591-597.
[31] 胡皓玮, 胥蕊娜, 姜培学. 多孔介质流动沸腾微观实验研究[J]. 工程热物理学报, 2021, 42(2):424-429. HU H W, XU R N, JIANG P X. Experimental investigation of flow boiling in porous media with micromodels[J]. Journal of Engineering Thermophysics, 2021, 42(2):424-429. (in Chinese)
[32] HU H W, JIANG P X, OUYANG X L, et al. A modified energy equation model for flow boiling in porous media and its application to transpiration cooling at low pressures with transient effect[J]. International Journal of Heat and Mass Transfer, 2020, 158:119745.
[33] DONG W J, WANG J H, CHEN S Y, et al. Modelling and investigation on heat transfer deterioration during transpiration cooling with liquid coolant phase-change[J]. Applied Thermal Engineering, 2018, 128(5):381-392.
[34] WU N, WANG J H, DONG W J, et al. An experimental investigation on combined sublimation and transpiration cooling for sintered porous plates[J]. International Journal of Heat and Mass Transfer, 2018, 116:685-693.
[35] WU N, WANG J H, HE F, et al. An experimental investigation on transpiration cooling of a nose cone model with a gradient porosity layout[J]. Experimental Thermal and Fluid Science, 2019, 106:194-201.
[36] 伍楠. 发散冷却关键问题的实验和数值研究[D]. 合肥:中国科学技术大学, 2019. WU N. Experimental and numerical investigations on the key problems of transpiration cooling[D]. Hefei:University of Science and Technology of China, 2019. (in Chinese)
[37] XIAO X F, ZHAO G B, ZHOU W X. Numerical investigation of transpiration cooling for porous nose cone with liquid coolant[J]. International Journal of Heat and Mass Transfer, 2018, 121:1297-1306.
[38] SU H, WANG J H, HE F, et al. Numerical investigation on transpiration cooling with coolant phase change under hypersonic conditions[J]. International Journal of Heat and Mass Transfer, 2019, 129:480-490.
[39] SHEN L, WANG J H, DONG W J, et al. An experimental investigation on transpiration cooling with phase change under supersonic condition[J]. Applied Thermal Engineering, 2016, 105:549-556.
[40] ZHANG B, HUANG H M, LU X L, et al. Experimental investigation on transpiration cooling for porous ceramic with liquid water[J]. Acta Astronautica, 2020, 167:117-121.
[41] 黄拯. 高温与超音速条件下发汗冷却基础问题研究[D]. 北京:清华大学, 2015. HUANG Z. Research on the transpiration cooling in supersonic and high temperature flow[D]. Beijing:Tsinghua University, 2015. (in Chinese)
[42] 廖致远, 祝银海, 黄干, 等. 超声速主流平板相变发汗冷却实验研究[J]. 推进技术, 2019, 40(5):1058-1064. LIAO Z Y, ZHU Y H, HUANG G, et al. Experimental investigation of transpiration cooling on a porous plate with phase change in supersonic flow tunnel[J]. Journal of Propulsion Technology, 2019, 40(5):1058-1064. (in Chinese)
[43] JIANG P X, HUANG G, ZHU Y H, et al. Experimental investigation of biomimetic self-pumping and self-adaptive transpiration cooling[J]. Bioinspiration & Biomimetics, 2017, 12(5):056002.
[44] HUANG G, LIAO Z Y, XU R N, et al. Self-pumping transpiration cooling with phase change for sintered porous plates[J]. Applied Thermal Engineering, 2019, 159:113870.
[45] HUANG G, ZHU Y H, LIAO Z Y, et al. Experimental investigation of self-pumping internal transpiration cooling[J]. International Journal of Heat and Mass Transfer, 2018, 123:514-522.
[46] HUANG G, LIAO Z Y, XU R N, et al. Self-pumping transpiration cooling with a protective porous armor[J]. Applied Thermal Engineering, 2020, 164:114485.
[47] HUANG G, ZHU Y H, LIAO Z Y, et al. Biomimetic self-pumping transpiration cooling for additive manufactured porous module with tree-like micro-channel[J]. International Journal of Heat and Mass Transfer, 2019, 131:403-410.
[48] 祝银海, 姜培学, 孙纪国, 等. 液体火箭推力室面板发汗冷却与燃烧耦合数值模拟[J]. 工程热物理学报, 2012, 33(1):101-104. ZHU Y H, JIANG P X, SUN J G, et al. Numerical investigation of transpiration cooling coupled with combustion in the thrust chamber of liquid rocket[J]. Journal of Engineering Thermophysics, 2012, 33(1):101-104. (in Chinese)
[49] HUANG G, ZHU Y H, JIANG P X, et al. Investigation of inclined porous transpiration-cooled struts[J]. Journal of Spacecraft and Rockets, 2018, 55(3):660-668.
[50] 金韶山, 姜培学, 孙纪国. 液体火箭发动机喷管发汗冷却研究[J]. 航空动力学报, 2008, 23(7):1334-1340. JIN S S, JIANG P X, SUN J G. Investigation on the transpiration cooling of a liquid rocket nozzle[J]. Journal of Aerospace Power, 2008, 23(7):1334-1340. (in Chinese)
[51] 金韶山, 姜培学, 孙纪国. 发汗冷却喷管多孔壁面的分段设计分析[J]. 航空动力学报, 2008, 23(12):2346-2352. JIN S S, JIANG P X, SUN J G. Analysis of the subsection design of the porous wall of a transpiration cooling nozzle[J]. Journal of Aerospace Power, 2008, 23(12):2346-2352. (in Chinese)
[52] XIONG Y B, ZHU Y H, JIANG P X. Numerical simulation of transpiration cooling for sintered metal porous strut of the scramjet combustion chamber[J]. Heat Transfer Engineering, 2014, 35(6-8):721-729.
[53] JIANG P X, HUANG G, ZHU Y H, et al. Experimental investigation of combined transpiration and film cooling for sintered metal porous struts[J]. International Journal of Heat and Mass Transfer, 2017, 108:232-243.
[54] HUANG G, ZHU Y H, LIAO Z Y, et al. Experimental study on combined cooling method for porous struts in supersonic flow[J]. Journal of Heat Transfer, 2018, 140(2):022201.
[55] HUANG G, ZHU Y H, HUANG Z, et al. Investigation of combined transpiration and opposing jet cooling of sintered metal porous struts[J]. Heat Transfer Engineering, 2018, 39(7-8):711-723.
[1] 王振宇, 王磊. 多策略帝王蝶优化算法及其工程应用[J]. 清华大学学报(自然科学版), 2024, 64(4): 668-678.
[2] 王斌, 张继文, 吴丹. 基于机器人建模的航空装配测控仿真分析方法[J]. 清华大学学报(自然科学版), 2024, 64(4): 724-737.
[3] 陈忠灿, 张凯, 李枫, 赵月, 武健辉, 贺棋楝, 陈民. 发汗冷却技术在飞行器上的应用及展望[J]. 清华大学学报(自然科学版), 2024, 64(2): 318-336.
[4] 刘安邦, 陈曦, 赵千川, 李博睿. 地铁线路储能装置与牵引装置联合优化配置方法[J]. 清华大学学报(自然科学版), 2023, 63(9): 1408-1414.
[5] 张潇月, 李玥, 王晨杨, 陈正侠, 贾海峰. 面向不同需求的未来社区海绵源头设施布局方法[J]. 清华大学学报(自然科学版), 2023, 63(9): 1483-1492.
[6] 张琳, 王金玉, 王鑫, 王伟, 曲立. 重大自然灾害下多灾害点应急物资智能调度优化[J]. 清华大学学报(自然科学版), 2023, 63(5): 765-774.
[7] 余志健, 杨倩雯, 王译晨, 杨东, 朱民. 燃烧振荡声学抑制器的机理分析与设计优化[J]. 清华大学学报(自然科学版), 2023, 63(4): 487-504.
[8] 张青松, 贾山, 陈金宝, 徐颖珊, 佘智勇, 蔡成志, 潘一华. 组合体无人机单体机翼构型设计与拓扑优化[J]. 清华大学学报(自然科学版), 2023, 63(3): 423-432.
[9] 臧金蕊, 焦朋朋, 宋国华, 王天实, 王健宇. 基于机动车比功率分布的生态驾驶评价与轨迹优化[J]. 清华大学学报(自然科学版), 2023, 63(11): 1760-1769.
[10] 代鑫, 陈举师, 陈涛, 黄弘, 李志鹏, 余水平. 抽水蓄能电站应急排水多目标优化方法及算例分析[J]. 清华大学学报(自然科学版), 2023, 63(10): 1558-1565.
[11] 闫慧慧, 李昊昱, 周伯豪, 张煜洲, 兰旭东. 离心压气机性能影响机理研究及优化[J]. 清华大学学报(自然科学版), 2023, 63(10): 1672-1685.
[12] 吴青建, 吴宏宇, 江智宏, 杨运强, 阎绍泽, 谭莉杰. 面向水下定点探测的水下滑翔机控制参数优化[J]. 清华大学学报(自然科学版), 2023, 63(1): 62-70.
[13] 于雪菲, 张帅, 刘琳琳, 都健. 基于信息间隙决策理论的碳捕集电厂调度[J]. 清华大学学报(自然科学版), 2022, 62(9): 1467-1473.
[14] 张明, 王恩志, 刘耀儒, 齐文彪, 王德辉. 利用多项式混沌展开的结构可靠性分析[J]. 清华大学学报(自然科学版), 2022, 62(8): 1314-1320.
[15] 郇宁, 姚恩建. 城际组合出行行为建模及应用研究进展[J]. 清华大学学报(自然科学版), 2022, 62(7): 1112-1120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn