Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (7): 537-556    DOI: 10.16511/j.cnki.qhdxxb.2020.26.011
  专题:大型水电站岩石力学与工程 本期目录 | 过刊浏览 | 高级检索 |
金沙江下游大型水电站岩石力学与工程综述
樊启祥1,2, 林鹏3, 蒋树1, 魏鹏程3, 李果1,2
1. 中国长江三峡集团有限公司, 北京 100038;
2. 中国华能集团有限公司, 北京 100031;
3. 清华大学 水利水电工程系, 北京 100084
Review on the rock mechanics and engineering practice for large hydropower stations along the downstream section of the Jinsha River
FAN Qixiang1,2, LIN Peng3, JIANG Shu1, WEI Pengcheng3, LI Guo1,2
1. China Three Gorges Corporation, Beijing 100038, China;
2. China Huaneng Group., Co., Ltd., Beijing 100031, China;
3. Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(5578 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 中国西南地区金沙江下游已建和在建的4座梯级水电站工程规模巨大,地质环境复杂,构造活动强烈,面临诸多岩石力学与工程建设难题。该文结合4座电站建设中的成功经验,对枢纽工程布置、坝基勘察分析及处理、巨型地下洞室群关键岩石力学问题及开挖支护、高边坡稳定以及精细爆破技术等方面进行总结,对建设过程中遇到的问题和处理方法形成的关键技术进行了论述。4座水电工程的坝基、地厂开挖等关键单元顺利建设得益于"认识岩体、利用岩体、保护岩体、监测反馈"的岩石力学与工程的指导思想及严格贯彻实施"开挖一层,分析一层,验收一层,预测一层"的程序,成功经验对类似的大型岩石工程建设具有借鉴意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
樊启祥
林鹏
蒋树
魏鹏程
李果
关键词 大型水电站坝基处理地下洞室高边坡精细爆破    
Abstract:Four large cascade hydropower stations have been constructed or are under construction along the downstream section of the Jinsha River in southwest China. The complex geological conditions and intensive tectonic activity in this region have created a number of challenging rock mechanics problems for these dams. This study used the experience accumulated during the construction of these four hydropower stations, the general layouts of the hydro-power projects, and analyses of the dam foundations to review key problems related to the rock mechanics, the excavation and prevention of large underground caverns, the steep slope stability and precision blasting methods used in these projects. This study also summarizes the problems and key methods used to solve those problems. The successes of these four hydropower stations benefited from a guiding ideology of understanding, utilization, protective monitoring and feedback on the surrounding rock masses during construction period, and an engineering procedure of the excavation, analysis, inspection, and prediction of each rock layer. These successful experiences can guide similar large rock engineering projects.
Key wordslarge hydropower stations    dam foundation treatment    underground caverns    steep slope    precision blasting
收稿日期: 2019-10-28      出版日期: 2020-06-04
引用本文:   
樊启祥, 林鹏, 蒋树, 魏鹏程, 李果. 金沙江下游大型水电站岩石力学与工程综述[J]. 清华大学学报(自然科学版), 2020, 60(7): 537-556.
FAN Qixiang, LIN Peng, JIANG Shu, WEI Pengcheng, LI Guo. Review on the rock mechanics and engineering practice for large hydropower stations along the downstream section of the Jinsha River. Journal of Tsinghua University(Science and Technology), 2020, 60(7): 537-556.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.26.011  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I7/537
  
  
  
  
  
  
  
  
  
[1] 黄润秋. 论中国西南地区水电开发工程地质问题及其研究对策[J]. 地质灾害与环境保护, 2002, 13(1):1-5. HUANG R Q. Discussion on the main engineering geological problems in hydropower development in southwestern China and their research strategies[J]. Journal of Geological Hazards and Environment Preservation, 2002, 13(1):1-5. (in Chinese)
[2] 佘诗刚, 林鹏. 中国岩石工程若干进展与挑战[J]. 岩石力学与工程学报, 2014, 33(3):433-457. SHE S G, LIN P. Some developments and challenging issues in rock engineering field in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(3):433-457. (in Chinese)
[3] 樊启祥, 陆佑楣, 周绍武, 等. 金沙江水电工程智能建造技术体系研究与实践[J]. 水利学报, 2019, 50(3):294-304. FAN Q X, LU Y M, ZHOU S W, et al. Research and practice on intelligent construction technology system of Jinsha River hydropower projects[J]. Journal of Hydraulic Engineering, 2019, 50(3):294-304. (in Chinese)
[4] 张宗亮. 糯扎渡水电站工程特点及关键技术研究[J]. 水力发电, 2005, 31(5):4-7. ZHANG Z L. The project characteristics of Nuozhadu Hydropower Station and its key technology research results[J]. Water Power, 2005, 31(5):4-7. (in Chinese)
[5] 樊启祥. LM-200型反井钻机在十三陵抽水蓄能电站出线竖井导井工程中的应用[J]. 人民长江, 1992, 23(10):10-13. FAN Q X. Application of LM-200 reverse drilling rig in the pilot shaft project of the outgoing shaft of Shisanling pumped storage power station[J]. Yangtze River, 1992, 23(10):10-13. (in Chinese)
[6] FAN Q X, ZHU H B, CHEN X C. Key issues in rock mechanics of the Three Gorges Project in China[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2011, 3(4):329-342.
[7] FAN Q X, ZHU H B, GENG J. Monitoring result analyses of high slope of five-step ship lock in the Three Gorges Project[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(2):199-206.
[8] 杨连生. 水利水电工程地质[M]. 武汉:武汉大学出版社, 2004. YANG L S. Engineering geology of water conservancy and hydropower[M]. Wuhan:Wuhan University Press, 2004. (in Chinese)
[9] 朱伯芳. 论混凝土坝的使用寿命及实现混凝土坝超长期服役的可能性[J]. 水利学报, 2012, 43(1):1-9. ZHU B F. On the expected life span of concrete dams and the possibility of endlessly long life of solid concrete dams[J]. Journal of Hydraulic Engineering, 2012, 43(1):1-9. (in Chinese)
[10] 廖立兵, 肖鹏, 张春芳, 等. 工程地质勘察可视化关键技术在滇中引水等工程中的应用[J]. 水利水电快报, 2018, 39(11):49-54. LIAO L B, XIAO P, ZHANG C F, et al. Application of key technologies of engineering geological survey visualization in water diversion project in Yunnan province[J]. Express Water Resources & Hydropower Information, 2018, 39(11):49-54. (in Chinese)
[11] 郝文忠, 王吉亮, 黄孝泉, 等. 金沙江乌东德水电站高拱坝河床建基面选择工程地质研究[J]. 工程地质学报, 2016, 24(S1):728-733. HAO W Z, WANG J L, HUANG X Q, et al. Study on the engineering geology of the selection of riverbed foundation plane of high arch dam of Wudongde hydropower station on Jinsha River[J]. Journal of Engineering Geology, 2016, 24(S1):728-733. (in Chinese)
[12] 何铁汉, 黄华, 舒华波, 等. 数字电视在乌东德水电站地质勘察中的应用[J]. 人民长江, 2007, 38(9):94-95, 102. HE T H, HUANG H, SHU H B, et al. Application of digital TV in geological reconnaissance of Wudongde hydropower station[J]. Yangtze River, 2007, 38(9):94-95, 102. (in Chinese)
[13] 李会中, 郝文忠, 潘玉珍, 等. 乌东德水电站坝址区河床深厚覆盖层组成与结构地质勘察研究[J]. 工程地质学报, 2014, 22(5):944-950. LI H Z, HAO W Z, PAN Y Z, et al. Composition and structure of geological prospecting in river deep overburden layers at dam site of Wudongde hydropower station[J]. Journal of Engineering Geology, 2014, 22(5):944-950. (in Chinese)
[14] 张明林, 周光辉, 洪炉, 等. 金沙江白鹤滩水电站急流水上钻探方法的研究及应用[J]. 工程勘察, 2008(S1):187-193. ZHANG M L, ZHOU G H, HONG L, et al. Research and application of drilling method in jet water of Baihetan hydropower station on Jinsha River[J]. Journal of Geotechnical Investigation & Surveying, 2008(S1):187-193. (in Chinese)
[15] 楼日新. 钻探新技术在溪洛渡电站中的开发和应用[J]. 中国地质灾害与防治学报, 2001, 12(3):42-43, 56. LOU R X. Development and application of new drilling techniques in Xiluodu hydropower station[J]. The Chinese Journal of Geological Hazard and Control, 2001, 12(3):42-43, 56. (in Chinese)
[16] 石安池, 唐鸣发, 周其健. 金沙江白鹤滩水电站柱状节理玄武岩岩体变形特性研究[J]. 岩石力学与工程学报, 2008, 27(10):2079-2086. SHI A C, TANG M F, ZHOU Q J. Research of deformation characteristics of columnar jointed basalt at Baihetan hydropower station on Jinsha River[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(10):2079-2086. (in Chinese)
[17] 王红彬, 郝宪杰, 李邵军, 等. 白鹤滩柱状节理岩体几何结构特征与卸荷松弛特性分析[J]. 土工基础, 2015, 29(3):84-87, 104. WANG H B, HAO X J, LI S J, et al. Properties of columnar jointed rock mass in rock structure and unloading loose and its engineering prevention[J]. Soil Engineering and Foundation, 2015, 29(3):84-87, 104. (in Chinese)
[18] 罗超文, 李海波, 马鹏. 刚性钻孔弹模计在白鹤滩电站坝基岩体变形参数测定中的应用[J]. 长江科学院院报, 2012, 29(8):76-82. LUO C W, LI H B, MA P. Application of borehole jack in deformation modulus measurement of rock mass in the foundation of Baihetan hydropower station[J]. Journal of Yangtze River Scientific Research Institute, 2012, 29(8):76-82. (in Chinese)
[19] 王春山. 溪洛渡电站建基岩体工程地质特性及反馈研究[D]. 成都:成都理工大学, 2010. WANG C S. Engineering geological characteristics and the feedback of foundation rock of Xiluodu hydropower station[D]. Chengdu:Chengdu University of Technology, 2010. (in Chinese)
[20] 丁宝晶. 溪洛渡水电站建基面Ⅲ2级岩体分布及可利用性研究[D]. 成都:成都理工大学, 2009. DING B J. Study on the distribution and available with foundation surface Ⅲ2 level rockmass of Xiluodu hydropower station[D]. Chengdu:Chengdu University of Technology, 2009. (in Chinese)
[21] 孙明权. 水利水电工程建筑物[M]. 北京:中央广播电视大学出版社, 2014. SUN M Q. Water conservancy and hydropower engineering waterworks[M]. Beijing:Open University of China Press, 2014. (in Chinese)
[22] 陈道周. 水电工程枢纽布置[M]. 北京:中国水利水电出版社, 2013. CHEN D Z. Layout of hydropower project[M]. Beijing:China Water & Power Press, 2013. (in Chinese)
[23] 张志恒, 王瑞彭, 汪永真. 我国高坝枢纽布置与泄洪消能技术进展综述[J]. 西北水资源与水工程, 1991, 2(2):1-15. ZHANG Z H, WANG R P, WANG Y Z. A general review on the layout of hydro-junction and technique of flood discharge and energy dissipation for high dams in China[J]. Water Resources & Water Engineering, 1991, 2(2):1-15. (in Chinese)
[24] LIN P, SHI J, WEI P C, et al. Shallow unloading deformation analysis on Baihetan super-high arch dam foundation[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(8):5551-5568.
[25] 宁宇, 徐卫亚, 郑文棠, 等. 白鹤滩水电站拱坝及坝肩加固效果分析及整体安全度评价[J]. 岩石力学与工程学报, 2008, 27(9):1890-1898. NING Y, XU W Y, ZHENG W T, et al. Reinforcement effect analysis and global safety evaluation of arch dam and abutment of Baihetan hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(9):1890-1898. (in Chinese)
[26] 徐卫亚, 狄圣杰, 郑文棠, 等. 白鹤滩水电站上坝线左拱座楔形体安全性能分析[J]. 岩石力学与工程学报, 2011, 30(5):910-916. XU W Y, DI S J, ZHENG W T, et al. Safety performance analysis of rock wedges under left skewback of upstream dam line in Baihetan hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(5):910-916. (in Chinese)
[27] 张永涛, 曾祥喜, 史艳. 向家坝水电站大坝基础处理设计[J]. 人民长江, 2015, 46(2):76-80. ZHANG Y T, ZENG X X, SHI Y. Dam foundation treatment design of Xiangjiaba hydropower station[J]. Yangtze River, 2015, 46(2):76-80. (in Chinese)
[28] 潘江洋, 冯树荣, 张永涛, 等. 向家坝水电站坝基变形控制与防渗抗滑处理[J]. 水力发电, 2017, 43(2):60-66. PAN J Y, FENG S R, ZHANG Y T, et al. Deformation control and anti-seepage and slide-resistance treatment for dam foundation of Xiangjiaba hydropower station[J]. Water Power, 2017, 43(2):60-66. (in Chinese)
[29] 王义锋, 章青. 基于界面元法的向家坝重力坝深层抗滑稳定分析[J]. 岩土力学, 2009, 30(9):2691-2696. WANG Y F, ZHANG Q. Analysis of anti-sliding stability in deep foundation of Xiangjiaba gravity dam based on interface element method[J]. Rock and Soil Mechanics, 2009, 30(9):2691-2696. (in Chinese)
[30] 于沭, 陈祖煜, 贾志欣, 等. 向家坝水电站坝基深层抗滑稳定性的流固耦合分析[J]. 中国水利水电科学研究院学报, 2010, 8(1):11-17. YU S, CHEN Z Y, JIA Z X, et al. Analysis on the deep anti-sliding stability of Xiangjiaba dam foundation by using fluid-structure interaction analysis[J]. Journal of China Institute of Water Resources and Hydropower Research, 2010, 8(1):11-17. (in Chinese)
[31] ZHONG D H, WANG Z, ZHANG Y C, et al. Fluid-solid coupling based on a refined fractured rock model and stochastic parameters:A case study of the anti-sliding stability analysis of the Xiangjiaba project[J]. Rock Mechanics and Rock Engineering, 2017, 51(8):2555-2567.
[32] ZHANG Q, WANG Z Q, XIA X Z. Interface stress element method and its application in analysis of anti-sliding stability of gravity dam[J]. Science China Technological Sciences, 2012, 55(12):3285-3291.
[33] 程浩, 陈鹏, 曾雄辉. 向家坝大坝抗滑稳定分析及处理方案研究[J]. 湖北水力发电, 2004(3):26-29, 70. CHENG H, CHEN P, ZENG X H. Study on stability against sliding & strengthening treatment scheme of Xiangjiaba gravity dam[J]. Hubei Water Power, 2004(3):26-29, 70. (in Chinese)
[34] 樊凯, 邹阳生, 王留涛. 向家坝水电站坝基渗控体系设计与动态优化调整[J]. 人民长江, 2015, 46(2):89-93. FAN K, ZOU Y S, WANG L T. Design of seepage control system of Xiangjiaba hydropower station and its dynamic optimization and adjustment[J]. Yangtze River, 2015, 46(2):89-93. (in Chinese)
[35] 丁鹏, 蒋中明. 向家坝水电站坝基渗控效果研究[J]. 吉林水利, 2016(6):6-10. DING P, JIANG Z M. Study on effect of seepage control measures of the dam base at Xiangjiaba hydropower station[J]. Jilin Water Resources, 2016(6):6-10. (in Chinese)
[36] 林鹏, 刘晓丽, 胡昱, 等. 应力与渗流耦合作用下溪洛渡拱坝变形稳定分析[J]. 岩石力学与工程学报, 2013, 32(6):1145-1156. LIN P, LIU X L, HU Y, et al. Deformation stability analysis of Xiluodu arch dam under stress-seepage coupling condition[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(6):1145-1156. (in Chinese)
[37] 王仁坤, 林鹏. 溪洛渡特高拱坝建基面嵌深优化的分析与评价[J]. 岩石力学与工程学报, 2008, 27(10):2010-2018. WANG R K, LIN P. Analysis and evaluation of optimizing design for foundation excavation of Xiluodu super-high arch dam[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(10):2010-2018. (in Chinese)
[38] 樊启祥, 周绍武, 李炳锋. 溪洛渡特高拱坝建设的岩石工程关键技术[J]. 岩石力学与工程学报, 2012, 31(10):1998-2015. FAN Q X, ZHOU S W, LI B F. Key technologies of rock engineering for construction of Xiluodu super-high arch dam[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(10):1998-2015. (in Chinese)
[39] LU Y M, FAN Q X, ZHOU S W, et al. Key technologies for the construction of the Xiluodu high arch dam on the Jinsha River in the development of hydropower in western China[J]. Engineering Sciences, 2012, 10(2):16-28.
[40] FAN Q X, ZHOU S W, YANG N. Optimization design of foundation excavation for Xiluodu super-high arch dam in China[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(2):120-135.
[41] 林鹏, 王仁坤, 康绳祖, 等. 特高拱坝基础破坏、加固与稳定关键问题研究[J]. 岩石力学与工程学报, 2011, 30(10):1945-1958. LIN P, WANG R K, KANG S Z, et al. Key problems of foundation failure, reinforcement and stability for superhigh arch dams[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(10):1945-1958. (in Chinese)
[42] 王仁坤. 溪洛渡拱坝设计综述[J]. 水力发电, 2003, 29(11):17-19. WANG R K. Summary on the design of Xiluodu arch dam[J]. Water Power, 2003, 29(11):17-19. (in Chinese)
[43] 路万锋, 周华. 金沙江乌东德水电站K25岩溶斜井处理方案研究[J]. 人民长江, 2017, 48(S2):217-220. LU W F, ZHOU H. Study of the treatment scheme for K25 Karst inclined shaft in Wudongde hydropower station on the Jinsha River[J]. Yangtze River, 2017, 48(S2):217-220. (in Chinese)
[44] 林鹏, 王铖, 翁永红, 等. 乌东德特高拱坝-地下厂房整体稳定相互作用机制分析[J]. 岩石力学与工程学报, 2014, 33(11):2236-2246. LIN P, WANG C, WENG Y H, et al. Analysis of interaction of overall stability of Wudongde super-high arch dam and underground powerhouse[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(11):2236-2246. (in Chinese)
[45] 樊少鹏, 丁刚, 黄小艳, 等. 乌东德水电站坝基固结灌浆方法试验研究[J]. 人民长江, 2014, 45(23):46-50. FAN S P, DING G, HUANG X Y, et al. Test study on dam foundation consolidation grouting at Wudongde hydropower station[J]. Yangtze River, 2014, 45(23):46-50. (in Chinese)
[46] SHI J, LIN P, ZHOU Y D, et al. Reinforcement analysis of toe blocks and anchor cables at the Xiluodu super-high arch dam[J]. Rock Mechanics and Rock Engineering, 2018, 51(8):2533-2554.
[47] 罗贯军, 郭增光, 张熊君. 白鹤滩水电站柱状节理玄武岩固结灌浆试验成果分析与建议[J]. 水利水电技术, 2015, 46(10):117-120. LUO G J, GUO Z G, ZHANG X J. Analysis and suggestion on achievement of consolidation grouting experiment of columnar jointed basalt for construction of Baihetan hydropower station[J]. Water Resources and Hydropower Engineering, 2015, 46(10):117-120. (in Chinese)
[48] FAN Q X, FENG X T, WENG W L, et al. Unloading performances and stabilizing practices for columnar jointed basalt:A case study of Baihetan hydropower station[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(6):1041-1053.
[49] 唐军峰. 大型水电站地下洞室群施工力学行为研究[D]. 长沙:中南大学, 2010. TANG J F. Construction mechanics behavior of large scale hydropower station underground caverns[D]. Changsha:Central South University, 2010. (in Chinese)
[50] 林媛媛, 杨兴国, 周家文, 等. 超大洞室群施工期围岩稳定性数值反馈分析及支护作用研究[J]. 四川水力发电, 2009, 28(4):40-44. LIN Y Y, YANG X G, ZHOU J W, et al. Numerical feedback analysis of surrounding rock stability and study on rock supporting during construction of extra large caverns[J]. Sichuan Water Power, 2009, 28(4):40-44. (in Chinese)
[51] 付成华, 汪卫明, 陈胜宏. 溪洛渡水电站坝区初始地应力场反演分析研究[J]. 岩石力学与工程学报, 2006, 25(11):2305-2312. FU C H, WANG W M, CHENG S H. Back analysis study on initial geostress field of dam site for Xiluodu hydropower project[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(11):2305-2312. (in Chinese)
[52] 金长宇, 冯夏庭, 张春生. 白鹤滩水电站初始地应力场研究分析[J]. 岩土力学, 2010, 31(3):845-850, 855. JIN C Y, FENG X T, ZHANG C S. Research on initial stress field of Baihetan hydropower station[J]. Rock and Soil Mechanics, 2010, 31(3):845-850, 855. (in Chinese)
[53] 杨述仁. 地下水电站厂房设计[M]. 北京:水利电力出版社, 1993. YANG S R. Design of underground hydropower station powerhouse[M]. Beijing:China Water & Power Press, 1993. (in Chinese)
[54] LIN P, ZHOU Y N, LIU H Y, et al. Reinforcement design and stability analysis for large-span tailrace bifurcated tunnels with irregular geometry[J]. Tunnelling and Underground Space Technology, 2013, 38(9):189-204.
[55] 辜晓原, 李佛炎, 禹芝文. 向家坝水电站地下厂房变顶高尾水系统研究[J]. 水力发电, 2004, 30(6):23-26. GU X Y, LI F Y, YU Z W. Study on the tailrace system with the ceiling height changes of underground powerhouse of Xiangjiaba hydroelectric project[J]. Water Power, 2004, 30(6):23-26. (in Chinese)
[56] 张永良, 缪明非. 变顶高尾水洞的顶坡及体形设计方法[J]. 水力发电, 2010, 36(11):27-29. ZHANG Y L, MIAO M F. Method on upper ceiling and configuration design of tailrace tunnel with inclined ceiling[J]. Water Power, 2010, 36(11):27-29. (in Chinese)
[57] 张强, 刘保华. 向家坝水电站右岸变顶高尾水洞的水力计算[J]. 水力发电, 2004, 30(3):32-33. ZHANG Q, LIU B H. Hydraulic calculation for tailrace tunnel with variable crown heights for underground powerhouse in right abutment at Xiangjiaba hydropower station[J]. Water Power, 2004, 30(3):32-33. (in Chinese)
[58] 覃玉兰, 辜晓原, 许莉. 向家坝水电站引水隧洞布置设计[J]. 水力发电, 2008, 34(8):35-37. QIN Y L, GU X Y, XU L. Arrangement design of the water diversion tunnel in Xiangjiaba hydropower station[J]. Water Power, 2008, 34(8):35-37. (in Chinese)
[59] 樊启祥, 刘益勇, 易志. 向家坝右岸地下电站尾水系统关键技术[J]. 岩石力学与工程学报, 2012, 31(12):2377-2388. FAN Q X, LIU Y Y, YI Z. Key technology of tailrace system at Xiangjiaba right-bank underground powerhouse[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12):2377-2388. (in Chinese)
[60] 胡清义, 翁永红, 曹去修, 等. 乌东德水电站枢纽布置设计与研究[J]. 人民长江, 2014, 45(20):16-20. HU Q Y, WENG Y H, CAO Q X, et al. Design and research on general layout of hydro-complex structures of Wudongde hydropower station[J]. Yangtze River, 2014, 45(20):16-20. (in Chinese)
[61] 廖仁强, 李伟, 向光红. 乌东德水电站枢纽布置方案研究[J]. 人民长江, 2009, 40(23):5-6, 20. LIAO R Q, LI W, XIANG G H. Research on layout of Wudongde hydropower station[J]. Yangtze River 2009, 40(23):5-6, 20. (in Chinese)
[62] 樊启祥, 王义锋, 裴建良, 等. 大型水电工程建设岩石力学工程实践[J]. 人民长江, 2018, 49(16):76-86. FAN Q X, WANG Y F, PEI J L, et al. Engineering practice of rock mechanics in large-scale hydropower projects[J]. Yangtze River, 2018, 49(16):76-86. (in Chinese)
[63] 江权, 樊义林, 冯夏庭, 等. 高应力下硬岩卸荷破裂:白鹤滩水电站地下厂房玄武岩开裂观测实例分析[J]. 岩石力学与工程学报, 2017, 36(5):1076-1087. JIANG Q, FAN Y L, FENG X T, et al. Unloading break of hard rock under high geo-stress condition:Inner cracking observation for the basalt in the Baihetan's underground powerhouse[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(5):1076-1087. (in Chinese)
[64] 刘国锋, 冯夏庭, 江权, 等. 白鹤滩大型地下厂房开挖围岩片帮破坏特征、规律及机制研究[J]. 岩石力学与工程学报, 2016, 35(5):865-878. LIU G F, FENG X T, JIANG Q, et al. Failure characteristics, laws and mechanisms of rock spalling in excavation of large-scale underground powerhouse caverns in Baihetan[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(5):865-878. (in Chinese)
[65] 段淑倩, 冯夏庭, 江权, 等. 高地应力下白鹤滩地下洞室群含错动带岩体破坏模式及机制研究[J]. 岩石力学与工程学报, 2017, 36(4):852-864. DUAN S Q, FENG X T, JIANG Q, et al. Failure modes and mechanisms for rock masses with staggered zones of Baihetan underground caverns under high geostress[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(4):852-864. (in Chinese)
[66] 孟国涛, 樊义林, 江亚丽, 等. 白鹤滩水电站巨型地下洞室群关键岩石力学问题与工程对策研究[J]. 岩石力学与工程学报, 2016, 35(12):2549-2560. MENG G T, FAN Y L, JIANG Y L, et al. Key rock mechanical problems and measures for huge caverns of Baihetan hydropower plant[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(12):2549-2560. (in Chinese)
[67] 金长宇, 张春生, 冯夏庭. 错动带对超大型地下洞室群围岩稳定影响研究[J]. 岩土力学, 2010, 31(4):1283-1288. JIN C Y, ZHANG C S, FENG X T. Research on influence of disturbed belt on stability of surrounding rock of large-scale underground caverns[J]. Rock and Soil Mechanics, 2010, 31(4):1283-1288. (in Chinese)
[68] 徐鼎平, 冯夏庭, 崔玉军, 等. 含层间错动带岩体的破坏模式及其剪切特性研究方法探讨[J]. 岩土力学, 2012, 33(1):129-136. XU D P, FENG X T, CUI Y J, et al. On failure mode and shear behavior of rock mass with interlayer staggered zone[J]. Rock and Soil Mechanics, 2012, 33(1):129-136. (in Chinese)
[69] 周垂一, 陈平志, 何世海, 等. 白鹤滩水电站巨型导流洞关键岩石力学问题与对策[J]. 隧道建设, 2018, 38(3):383-391. ZHOU C Y, CHEN P Z, HE S H, et al. Key rock mechanics problems and countermeasures on huge diversion tunnel of Baihetan hydropower station[J]. Tunnel Construction, 2018, 38(3):383-391. (in Chinese)
[70] 王红彬. 柱状节理玄武岩洞段开挖支护施工技术——以白鹤滩水电站导流洞为例[J]. 水电与新能源, 2014(9):33-35. WANG H B. Excavation support technology for diversion tunnel construction in basalts with columnar joints in Baihetan hydropower station[J]. Hydropower and New Energy, 2014(9):33-35. (in Chinese)
[71] 王鹏, 洪望兵, 宋刚. 柱状节理玄武岩松弛圈尺寸效应及地应力影响[J]. 岩土工程学报, 2018, 40(1):139-146. WANG P, HONG W B, SONG G. Influences of size effect and in-situ stress of columnar jointed basalt relaxation zone[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1):139-146. (in Chinese)
[72] 齐界夷, 贺明武, 唐昭醒, 等. 乌东德水电站左岸地下厂房快速安全开挖支护施工技术[J]. 施工技术, 2018, 47(7):132-135. QI J Y, HE M W, TANG Z X, et al. High efficient construction techniques for the underground powerhouse of Wudongde hydropower station in left-bank[J]. Construction Technology, 2018, 47(7):132-135. (in Chinese)
[73] 韩进奇, 杨帆, 张丹萍. 新型液压自行式岩锚梁浇筑台车的设计与应用[J]. 四川水力发电, 2017, 36(6):1-6, 12. HAN J Q, YANG F, ZHANG D P. Design and application of new type hydraulic self-propelled rock anchor beam casting trolley[J]. Sichuan Water Power, 2017, 36(6):1-6, 12. (in Chinese)
[74] 樊启祥. 采用反井钻机进行高压管道导井施工[J]. 水利水电技术, 1994(5):37-39. FAN Q X. Construction of high pressure pipeline pilot with reverse drilling rig[J]. Water Resources and Hydropower Engineering, 1994(5):37-39. (in Chinese)
[75] 王红彬, 李毅, 张学亮, 等. 大型反井钻机新技术在白鹤滩水电站溜渣井中的应用[J]. 水力发电, 2019, 45(5):73-76, 102. WANG H B, LI Y, ZHANG X L, et al. Application of new large reverse drilling rig technology in deep shaft excavation of Baihetan hydropower station[J]. Water Power, 2019, 45(5):73-76, 102. (in Chinese)
[76] 樊启祥, 李毅, 王红彬, 等. 白鹤滩水电站超大型地下洞室群施工期通风技术探讨[J]. 水利水电技术, 2018, 49(9):110-119. FAN Q X, LI Y, WANG H B, et al. Discussion on ventilation technique during construction of ultra-large underground caverns for Baihetan hydropower station[J]. Water Resources and Hydropower Engineering, 2018, 49(9):110-119. (in Chinese)
[77] 林鹏, 石杰, 周华, 等. 乌东德坝肩结构面影响及协调加固稳定分析[J]. 岩石力学与工程学报, 2016, 35(S2):3937-3946. LIN P, SHI J, ZHOU H, et al. Stability analysis on structural plane effects and compatible reinforcement relating to Wudongde dam abutments[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S2):3937-3946. (in Chinese)
[78] 张世殊, 冉从彦, 裴向军. 环境边坡危岩体勘察[M]. 北京:中国水利水电出版社, 2014. ZHANG S S, RAN C Y, PEI X J. Survey of dangerous rock body in environmental slope[M]. Beijing:China Water & Power Press, 2014. (in Chinese)
[79] 李会中, 向家菠, 翁金望, 等. 金沙江乌东德水电站坝址高边坡稳定性研究[J]. 资源环境与工程, 2009, 23(5):590-597. LI H Z, XIANG J B, WENG J W, et al. Study on high slope stability at the dam site of the Wudongde hydropower station in Jinsha River[J]. Resources Environment & Engineering, 2009, 23(5):590-597. (in Chinese)
[80] 白伟, 王吉亮, 李志, 等. 层状岩质高位自然边坡危险源判定及处理[J]. 资源环境与工程, 2018, 32(3):425-429. BAI W, WANG J L, LI Z, et al. Determination and treatment of hazard source of high natural slope with stratified rock[J]. Resources Environment & Engineering, 2018, 32(3):425-429. (in Chinese)
[81] 李会中, 刘冲平, 黄孝泉, 等. 金沙江乌东德水电站枢纽区高位自然边坡块体安全性评价与处理措施研究[J]. 资源环境与工程, 2011, 25(5):468-473. LI H Z, LIU C P, HUANG X Q, et al. Study on block safety evaluation and treatment measures of high natural slope in key region of Wudongde hydropower station of Chin-sha River[J]. Resources Environment & Engineering, 2011, 25(5):468-473. (in Chinese)
[82] 王吉亮, 杨静, 陈又华, 等. 复杂层状高陡岩质边坡变形与稳定性研究[J]. 水利学报, 2015, 46(12):1414-1422. WANG J L, YANG J, CHEN Y H, et al. Study on deformation and stability of complex layered high and steep rock slope[J]. Journal of Hydraulic Engineering, 2015, 46(12):1414-1422. (in Chinese)
[83] 凌骐, 张轩, 孔松, 等. 水电工程地质灾害监测预警与应急管理系统设计及应用[J]. 水电与抽水蓄能, 2017, 3(6):35-39. LING Q, ZHANG X, KONG S, et al. Designing and application of geological hazard monitoring and early-warning management system in hydropower project[J]. Hydropower and Pumped Storage, 2017, 3(6):35-39. (in Chinese)
[84] 何满潮. 滑坡地质灾害远程监测预报系统及其工程应用[J]. 岩石力学与工程学报, 2009, 28(6):1081-1090. HE M C. Real-time remote monitoring and forecasting system for geological disasters of landslides and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(6):1081-1090. (in Chinese)
[85] 钱七虎. 中国岩石工程技术的新进展[J]. 中国工程科学, 2010, 12(8):37-48. QIAN Q H. New progress of Chinese rock engineering[J]. Engineering Sciences, 2010, 12(8):37-48. (in Chinese)
[86] 饶小康, 罗熠, 姚振和. 白鹤滩水电站开挖爆破数字化系统研究与开发[J]. 长江科学院院报, 2016, 33(1):143-146. RAO X K, LUO Y, YAO Z H. Research and development of excavation blasting digital system for Baihetan hydropower station[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(1):143-146. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn