Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (3): 177-182    DOI: 10.16511/j.cnki.qhdxxb.2020.26.012
  索驱动机器人 本期目录 | 过刊浏览 | 高级检索 |
面向航天器分离的高速索力传递特性
侯森浩1, 唐晓强1,2, 孙海宁1, 崔志伟1, 王殿君3
1. 清华大学 机械工程系, 北京 100084;
2. 清华大学 摩擦学国家重点实验室, 精密超精密制造装备及控制北京市重点实验室, 北京 100084;
3. 北京石油化工学院, 北京 102617
Transfer characteristics of high-speed cable forces for spacecraft separation
HOU Senhao1, TANG Xiaoqiang1,2, SUN Haining1, CUI Zhiwei1, WANG Dianjun3
1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
2. Beijing Key Laboratory of Precision/Ultra-Precision Manufacturing Equipments and Control, State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China;
3. Beijing Institute of Petrochemical Technology, Beijing 102617, China
全文: PDF(3638 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 在航天器分离的地面模拟试验中,其受力状态的准确施加是试验的关键环节。该文基于航天器主动式分离试验方案,研究了航天器在高速分离过程中的绳索索力传递问题。首先通过Newton运动定律推导了绳索提升系统的动力学模型;然后引入测试函数,使用空间离散的方法对二阶偏微分方程求解,得到绳索在运动过程中的受力关系,并探索其对绳索索力的影响因素;最后通过数值仿真及实例进行验证。结果表明:该模型能够准确模拟绳索受力状态,对航天器主动式高速分离试验具有指导性意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
侯森浩
唐晓强
孙海宁
崔志伟
王殿君
关键词 航天器分离绳索提升系统动力学模型高速索力传递    
Abstract:Ground simulation tests of spacecraft separation require accurate force predictions as the key link in the tests. This study analyzed the cable force transfer during high-speed spacecraft separation tests. A dynamic model of the cable hoist system was developed based on Newton's laws. The second-order partial differential equation for the test function was then solved using spatial discretization. The solution predicted the force on the rope as it moved to study the factors influencing the force. The model accuracy was verified by numerical examples. The results show that the model can accurately simulate the force on the rope for high-speed spacecraft separation tests.
Key wordsspacecraft separation    cable hoist system    dynamic model    high-speed cable force transfer
收稿日期: 2019-11-05      出版日期: 2021-03-06
基金资助:唐晓强,教授,E-mail:tang-xq@tsinghua.edu.cn
引用本文:   
侯森浩, 唐晓强, 孙海宁, 崔志伟, 王殿君. 面向航天器分离的高速索力传递特性[J]. 清华大学学报(自然科学版), 2021, 61(3): 177-182.
HOU Senhao, TANG Xiaoqiang, SUN Haining, CUI Zhiwei, WANG Dianjun. Transfer characteristics of high-speed cable forces for spacecraft separation. Journal of Tsinghua University(Science and Technology), 2021, 61(3): 177-182.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.26.012  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I3/177
  
  
  
  
  
  
  
  
[1] BENDURA R J, LUNDSTROM R R, RENFROE P G, et al. Flight tests of Viking parachute system in three Mach number regimes. 2:Parachute test results:NASA TN D-7734[R]. Washington:NASA, 1974.
[2] EDQUIST K T. Computations of Viking lander capsule hypersonic aerodynamics with comparisons to ground and flight data[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Keystone, United States:AIAA, 2006:6137-6145.
[3] NEEB D, GVLHAN A, AUGENSTEIN E. Experimental study of ExoMars sub and transonic aerodynamics and heat shield separation in HST[C]//Proceedings of 7th European Symposium on Aerothermodynamics. Brugge, Belgium, 2011:11-19.
[4] 孙泽洲, 张熇, 贾阳, 等. 嫦娥三号探测器地面验证技术[J]. 中国科学:技术科学, 2014, 44(4):369-376. SUN Z Z, ZHANG H, JIA Y, et al. Ground validation technologies for Chang'E-3 lunar spacecraft[J]. Scientia Sinica Technologica, 2014, 44(4):369-376. (in Chinese)
[5] SCHAFFERS W J. The vibration of shaft ropes with time-variable length, treated by means of Riemann's method[J]. Journal of Engineering for Industry, 1961, 83(1):68-72.
[6] CHEN Y. On the longitudinal vibration of a moving elevator cable-car system[D]. Baltimore:University of Maryland, 2008.
[7] CHEN C Y. Lateral-axial coupling and boundary conditioning of vibrating strings and cables[D]. Montreal:Concordia University, 2007.
[8] DIAO X M, MA O. Vibration analysis of cable-driven parallel manipulators[J]. Multibody System Dynamics, 2009, 21(4):347-360.
[9] 包继虎, 张鹏, 朱昌明. 变长度提升系统钢丝绳纵向振动特性[J]. 振动与冲击, 2013, 32(15):173-177. BAO J H, ZHANG P, ZHU C M. Longitudinal vibration of rope hoisting systems with time-varying length[J]. Journal of Vibration and Shock, 2013, 32(15):173-177. (in Chinese)
[10] BAO J H, ZHANG P, ZHU C M. Modeling and control of longitudinal vibration on flexible hoisting systems with time-varying length[J]. Procedia Engineering, 2011, 15:4521-4526.
[11] ZHU W D, REN H. An accurate spatial discretization and substructure method with application to moving elevator cable-car systems-Part I:Methodology[J]. Journal of Vibration and Acoustics, 2013, 135(5):051036.
[12] BAMDAD M. Analytical dynamic solution of a flexible cable-suspended manipulator[J]. Frontiers of Mechanical Engineering, 2013, 8(4):350-359.
[13] WANG L, CAO G H, WANG N G, et al. Modeling and dynamic behavior analysis of rope-guided traction system with terminal tension acting on compensating rope[J]. Shock and Vibration, 2019, 2019:6362198.
[14] WANG N G, CAO G H, YAN L, et al. Modeling and control for a multi-rope parallel suspension lifting system under spatial distributed tensions and multiple constraints[J]. Symmetry, 2018, 10(9):412-419.
[15] ZHANG Q, YANG Y H, HOU T, et al. Dynamic analysis of high-speed traction elevator and traction car-rope time-varying system[J]. Noise & Vibration Worldwide, 2019, 50(2):37-45.
[1] 李建, 王生海, 刘将, 高钰富, 韩广冬, 孙玉清. 绳驱动船舱清洗机器人动力学建模及鲁棒控制[J]. 清华大学学报(自然科学版), 2024, 64(3): 562-577.
[2] 李东兴, 侯森浩, 孙海宁, 黎帆, 唐晓强. 航天降落伞撕裂带测试装置及其动态索力响应特性[J]. 清华大学学报(自然科学版), 2023, 63(3): 294-301.
[3] 王煜天, 张瑞杰, 吴军, 汪劲松. 移动式混联喷涂机器人的动力学性能波动评价[J]. 清华大学学报(自然科学版), 2022, 62(5): 971-977.
[4] 赵雅聪, 王启明. FAST索牵引并联机器人的动力学建模与仿真[J]. 清华大学学报(自然科学版), 2022, 62(11): 1772-1779.
[5] 徐志, 马静, 王浩, 赵建世, 胡雅杰, 杨贵羽. 长江口影响水资源承载力关键指标与临界条件[J]. 清华大学学报(自然科学版), 2019, 59(5): 364-372.
[6] 王潇剑, 吴军, 岳义, 许允斗. 2UPU/SP 3自由度并联机构的动力学性能评价[J]. 清华大学学报(自然科学版), 2019, 59(10): 838-846.
[7] 杨飞, 傅旭东. 垂向基于谱方法的三维弯道水流模型[J]. 清华大学学报(自然科学版), 2018, 58(10): 914-920.
[8] 张彬彬, 王立平, 吴军. 3自由度并联机构的动力学各向同性评价方法[J]. 清华大学学报(自然科学版), 2017, 57(8): 803-809.
[9] 于广, 王立平, 吴军, 王冬. 3自由度并联主轴头的动力学建模及动态特性[J]. 清华大学学报(自然科学版), 2017, 57(12): 1317-1323.
[10] 赵富龙, 薄涵亮, 刘潜峰. 压力变化条件下静止液滴相变模型[J]. 清华大学学报(自然科学版), 2016, 56(7): 759-764,771.
[11] 郑东, 钟北京. 四组分汽油替代燃料的化学动力学模型[J]. 清华大学学报(自然科学版), 2015, 55(10): 1135-1142.
[12] 刘荣华, 魏加华, 翁燕章, 王光谦, 唐爽. HydroMP:基于云计算的水动力学建模及计算服务平台[J]. 清华大学学报(自然科学版), 2014, 54(5): 575-583.
[13] 冯蘅, 李清海, 甘超, 蒙爱红, 张衍国. 循环流化床返料装置1维动力学模型[J]. 清华大学学报(自然科学版), 2014, 54(2): 229-234.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn