Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (11): 934-942    DOI: 10.16511/j.cnki.qhdxxb.2020.26.017
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
上楼自然行走质心机械能分配与代谢消耗规律
兰箭1, 张继文1, 付成龙2, 陈恳1
1. 清华大学 机械工程系, 北京 100084;
2. 南方科技大学 机械与能源工程系, 深圳 518055
Distribution of the center of mass work and metabolism during stair climbing
LAN Jian1, ZHANG Jiwen1, FU Chenglong2, CHEN Ken1
1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
2. Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
全文: PDF(2615 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 上楼自然行走的质心机械能分配和代谢消耗对于深入研究上楼行走的机理具有重要的意义。该文建立了上楼行走模型,定义了反映质心机械能分配和代谢消耗的相关参数,建立了这些参数与垂直地面反力之间的数学关系,通过实验测试和讨论分析,得到质心机械能分配的规律为:在双腿支撑期和单腿支撑期内,单腿做功的平均功率均小于一步内的平均质心功率,双腿支撑期前腿和后腿做功比较均衡,前腿略大,能量分配的规律使垂直地面反力曲线形状变化小,并有利于单腿支撑期时保护膝关节。质心机械能代谢消耗的规律为:上楼自然行走比较节能,但并非最节能,表现为垂直地面反力曲线略凹,这种能耗方式可以避免踝关节提前跖曲和产生过大的跖曲角度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
兰箭
张继文
付成龙
陈恳
关键词 质心机械能分配代谢消耗质心功率平均功率之比代谢消耗比    
Abstract:The distribution of the center of mass (CoM) work and the metabolism are of great significance for studies of the mechanism of climbing stairs. This paper presents a stair climbing model, defines key parameters reflecting the distribution of the CoM work and metabolism and presents the mathematical relationships between these parameters and the vertical ground reaction force (VGRF). Tests and analyses show that the average power in a single leg is less than the average CoM work rate in one step during the double support and single support phases. During the double support phase, the work rates by the leading and trailing legs are nearly balanced with slightly more work done by the leading leg. The CoM work distribution has little effect on the VGRF curve shape but protects the knee joint during the single support phase. Analysis of the metabolism during the CoM work shows that walking upstairs naturally saves energy, but is not the most energy efficient method. The slightly concave shape of the VGRF curve reduces the probability of early ankle joint plantarflexion and excessive plantarflexion.
Key wordsCoM work distribution    metabolism consumption    CoM work rate    ratio of average power    metabolic consumption ratio
收稿日期: 2019-11-07      出版日期: 2020-08-31
基金资助:付成龙,副教授,E-mail:fucl@sustc.edu.cn
引用本文:   
兰箭, 张继文, 付成龙, 陈恳. 上楼自然行走质心机械能分配与代谢消耗规律[J]. 清华大学学报(自然科学版), 2020, 60(11): 934-942.
LAN Jian, ZHANG Jiwen, FU Chenglong, CHEN Ken. Distribution of the center of mass work and metabolism during stair climbing. Journal of Tsinghua University(Science and Technology), 2020, 60(11): 934-942.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.26.017  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I11/934
  
  
  
  
  
  
  
  
  
  
[1] KUO A D, DONELAN J M, RUINA A. Energetic consequences of walking like an inverted pendulum:Step-to-step transitions[J]. Exercise and Sport Sciences Reviews, 2005, 33(2):88-97.
[2] ⅡJIMA H, EGUCHI R, SHIMOURA K, et al. Stair climbing ability in patients with early knee osteoarthritis:Defining the clinical hallmarks of early disease[J]. Gait & Posture, 2019, 72:148-153.
[3] PARK D, SEONG Y J, WOO H, et al. Paralysis of the gastrocnemius medial head differentially affects gait patterns and muscle activity during level and stair ascent locomotion[J]. Gait & Posture, 2019, 72:222-227.
[4] LEWERENZ A, WOLF S I, DREHER T, et al. Performance of stair negotiation in patients with cerebral palsy and stiff knee gait[J]. Gait & Posture, 2019, 71:14-19.
[5] NADEAU S, MCFADYEN B J, MALOUIN F. Frontal and sagittal plane analyses of the stair climbing task in healthy adults aged over 40 years:What are the challenges compared to level walking?[J]. Clinical Biomechanics, 2003, 18(10):950-959.
[6] NOVAK A C, BROUWER B. Sagittal and frontal lower limb joint moments during stair ascent and descent in young and older adults[J]. Gait & Posture, 2011, 33(1):54-60.
[7] RIENER R, RABUFFETTI M, FRIGO C. Stair ascent and descent at different inclinations[J]. Gait & Posture, 2002, 15(1):32-44.
[8] 张瑞红, 金德闻, 张济川, 等.不同路况下正常步态特征研究[J].清华大学学报(自然科学版), 2000, 40(8):77-80. ZHANG R H, JIN D W, ZHANG J C, et al. Normal gait patterns on different terrain[J]. Journal of Tsinghua University (Science and Technology), 2000, 40(8):77-80. (in Chinese)
[9] VALLABHAJOSULA S, YENTES J M, MOMCILOVIC M, et al. Do lower-extremity joint dynamics change when stair negotiation is initiated with a self-selected comfortable gait speed?[J]. Gait & Posture, 2012, 35(2):203-208.
[10] LEWIS J, FREISINGER G, PAN X L, et al. Changes in lower extremity peak angles, moments and muscle activations during stair climbing at different speeds[J]. Journal of Electromyography and Kinesiology, 2015, 25(6):982-989.
[11] PROTOPAPADAKI A, DRECHSLER W I, CRAMP M C, et al. Hip, knee, ankle kinematics and kinetics during stair ascent and descent in healthy young individuals[J]. Clinical Biomechanics, 2007, 22(2):203-210.
[12] 唐刚, 魏高峰, 周海, 等.测量并分析上楼梯过程中下肢关节角变化[J].医用生物力学, 2011, 26(5):460-464. TANG G, WEI G F, ZHOU H, et al. Measurement and analysis of the joint angle in lower limb during stair ascent[J]. Journal of Medical Biomechanics, 2011, 26(5):460-464. (in Chinese)
[13] STACOFF A, DIEZI C, LUDER G, et al. Ground reaction forces on stairs:Effects of stair inclination and age[J]. Gait & Posture, 2005, 21(1):24-38.
[14] 兰箭, 朴贤浚, 付成龙, 等. 不同上楼速度下的垂直地面反力[J]. 清华大学学报(自然科学版), 2019, 59(6):453-460. LAN J, HYUNJUN P, FU C L, et al. Vertical ground reaction forces at various speeds during stair climbing[J]. Journal of Tsinghua University (Science and Technology), 2019, 59(6):453-460. (in Chinese)
[15] MINETTI A E, ALEXANDER R M. A theory of metabolic costs for bipedal gaits[J]. Journal of Theoretical Biology, 1997, 186(4):467-476.
[16] ALEXANDER R M, JAYES A S. Fourier analysis of forces exerted in walking and running[J]. Journal of Biomechanics, 1980, 13(4):383-390.
[17] ALEXANDER R M, JAYES A S. Optimum walking techniques for idealized animals[J]. Journal of Zoology, 1978, 186(1):61-81.
[18] WILLEMS P A, CAVAGNA G A, HEGLUND N C. External, internal and total work in human locomotion[J]. Journal of Experimental Biology, 1995, 198(2):379-393.
[19] DONELAN J M, KRAM R, KUO A D. Simultaneous positive and negative external mechanical work in human walking[J]. Journal of Biomechanics, 2002, 35(1):117-124.
[20] DONELAN J M, KRAM R, KUO A D. Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking[J]. Journal of Experimental Biology, 2002, 205(23):3717-3727.
[21] HAO M, CHEN K, FU C L. Effects of hip torque during step-to-step transition on center-of-mass dynamics during human walking examined with numerical simulation[J]. Journal of Biomechanics, 2019, 90(4):33-39.
[22] RUINA A, BERTRAM J E A, SRINIVASAN M. A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo-elastic leg behavior in running and the walk-to-run transition[J]. Journal of Theoretical Biology, 2005, 237(2):170-192.
[23] DE LEVA P. Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters[J]. Journal of Biomechanics, 1996, 29(9):1223-1230.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn