Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (3): 261-268    DOI: 10.16511/j.cnki.qhdxxb.2020.26.020
  电子工程 本期目录 | 过刊浏览 | 高级检索 |
汪俊东, 赵越喆
华南理工大学 亚热带建筑科学国家重点实验室, 广州 510640
Stepped sound diffuser arrangement and diffusion analysis
WANG Jundong, ZHAO Yuezhe
State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510640, China
全文: PDF(1226 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 应用时域有限差分法计算阶梯状声扩散体的反射声场,通过理论计算结果和全消声室测量结果对比证明了计算方法的有效性。在近似远场条件下,传声器、声源与扩散体之间的距离对扩散系数计算结果没有影响。将声场时域有限差分法与免疫遗传算法相结合对单周期六阶阶梯状扩散体的形体进行优化。优化后的单周期扩散体的扩散性能优于原扩散体,但经周期排布后,两者的扩散性能均降低。依二进制序列排布正反相扩散体,通过寻优计算得到扩散体排布,其整体扩散性能优于传统的周期重复排布方式,但没能获得平直的扩散系数频率特性曲线。将优化后的阶梯状扩散体与原扩散体按照二进制序列混合排布,通过寻优计算得到扩散体排布进一步提高了整体扩散性能。
E-mail Alert
关键词 声扩散体时域有限差分免疫遗传算法扩散系数排布方式    
Abstract:Diffuser sound scattering was predicted using the finite difference time domain (FDTD) method. There were no obvious differences in the diffusion coefficient when changing the distance between the diffuser and the receivers or source in the approximate far field. Then, FDTD was combined with the immune genetic algorithm to optimize the shape of a 6th order stepped sound diffuser which had better diffusion than the original diffuser. The sound scattering from the two diffusers became less diffuse when repeated over many periods. An aperiodic modulation method was used to combine a diffuser and its inverse diffuser using a binary code. Tests show that aperiodic modulated diffusers have better diffusion than periodic diffusers; however, this modulation cannot produce a flat diffusion coefficient curve, so the best diffusion is obtained by arranging the optimized stepped diffuser with the original diffuser together using a binary code.
Key wordssound diffuser    finite difference time domain    immune genetic algorithm    diffusion coefficient    diffuser arrangement
收稿日期: 2020-04-02      出版日期: 2021-03-06
汪俊东, 赵越喆. 阶梯状声扩散体排布方式对扩散性能影响分析[J]. 清华大学学报(自然科学版), 2021, 61(3): 261-268.
WANG Jundong, ZHAO Yuezhe. Stepped sound diffuser arrangement and diffusion analysis. Journal of Tsinghua University(Science and Technology), 2021, 61(3): 261-268.
链接本文:  或
[1] SCHROEDER M R. Diffuse sound reflection by maximum length sequences[J]. Journal of the Acoustical Society of America, 1975, 57(1):149-150.
[2] SCHROEDER M R. Binaural dissimilarity and optimum ceilings for concert halls:More lateral sound diffusion[J]. Journal of the Acoustical Society of America, 1979, 65(4):958-963.
[3] SCHROEDER M R. Toward better acoustics for concert halls[J]. Physics Today, 1980, 33(10):24-30.
[4] COX T J. The optimization of profiled diffusers[J]. Journal of the Acoustical Society of America, 1995, 97(5):2928-2936.
[5] JRVINEN A, SAVIOJA L, MELKAS K. Numerical simulations of the modified Schroeder diffuser structure[J]. Journal of the Acoustical Society of America, 1998, 103(5):2737-2738.
[6] COX T J, AVIS M R, XIAO L. Maximum length sequence and Bessel diffusers using active technologies[J]. Journal of Sound and Vibration, 2006, 289(4-5):807-829.
[7] ZHU Y F, FAN X D, LIANG B, et al. Ultrathin acoustic metasurface-based schroeder diffuser[J]. Physical Review X, 2017, 7(2):021034.1.
[8] ANGUS J A S. Using grating modulation to achieve wideband large area diffusers[J]. Applied Acoustics, 2000, 60(2):143-165.
[9] BERKHOUT A J, PALTHE D W, DE VRIES D. Theory of optimal plane diffusers[J]. Journal of the Acoustical Society of America, 1979, 65(5):1334-1336.
[10] DE JONG D B, BERG P M. Theoretical design of optimum planar sound diffusers[J]. Journal of the Acoustical Society of America, 1980, 68(4):1154-1159.
[11] STRUBE H W. Scattering of a plane wave by a Schroeder diffusor:A mode-matching approach[J]. The Journal of the Acoustical Society of America, 1980, 67(2):453-459.
[12] STRUBE H W. More on the diffraction theory of Schroeder diffusors[J]. The Journal of the Acoustical Society of America, 1981, 70(2):633-635.
[13] COX T J, LAM Y W. The performance of realisable quadratic residue diffusers[J]. Applied Acoustics, 1994, 41(3):237-246.
[14] COX T J, LAM Y M. Prediction and evaluation of the scattering from quadratic residue diffusers[J]. Journal of the Acoustical Society of America, 1994, 95(1):297-305.
[15] SCHADY A, HEIMANN D, FENG J. Acoustic effects of trees simulated by a finite-difference time-domain model[J]. Acta Acustica United with Acustica, 2014, 100(6):1112-1119.
[16] MOKHTARI P, TAKEMOTO H, NISHIMURA R, et al. Optimum loss factor for a perfectly matched layer in finite-difference time-domain acoustic simulation[J]. IEEE Transactions on Audio, Speech and Language Processing, 2010, 18(5):1068-1071.
[17] 黄坤朋, 赵越喆. 声学FDTD法完全匹配层数和衰减系数对衰减性能的影响[J]. 华南理工大学学报(自然科学版), 2011, 39(4):135-139.HUANG K P, ZHAO Y Z. Attenuation ability influenced by amount and attenuation coefficient of perfectly matched layers in acoustic FDTD method[J]. Journal of South China University of Technology (Natural Science Edition), 2011, 39(4):135-139. (in Chinese)
[18] ISO. Acoustics-sound-scattering pro-perties of surfaces:ISO 17497[S]. Switzerland:ISO, 2012.
[19] 汪俊东, 赵越喆. 阶梯状声扩散体形体优化方法[J]. 声学学报, 2020, 45(2):281-288.WANG J D, ZHAO Y Z. Stepped soubd diffuser's shape optimization[J]. Acta Acustica, 2020, 45(2):281-288. (in Chinese)
No related articles found!
Full text



版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持