Abstract:A computed torque controller was developed for trajectory tracking control of a two-DOF cable-suspended parallel robot. Interval arithmetic was used to analyze the cable tensions' parameter space consisting of the controller parameter and the initial states of the end-effector and to obtain the sufficient conditions of the reliable parameter space which satisfied the tension constraints. This method can track various trajectories such as periodic horizontal, vertical and circular trajectories, as well as point-to-point dynamic trajectories. When the initial state is not on the desired trajectory, the method provides a transition to the desired trajectory. Simulations show that the parameter combinations in the reliable space ensure that the end-effector converges exponentially to the desired trajectory and that the cable tensions remain positive at all times.
任凭, 何梦伊. 二自由度悬索并联机器人计算力矩控制[J]. 清华大学学报(自然科学版), 2021, 61(3): 209-216.
REN Ping, HE Mengyi. Tracking control of a two-DOF cable-suspended parallel robot using the computed torque method. Journal of Tsinghua University(Science and Technology), 2021, 61(3): 209-216.
[1] MIURA K, FURUYA H, SUZUKI K. Variable geometry truss and its application to deployable truss and space crane arms[J]. Acta Astronautica, 1984, 12(7-8):599-607. [2] LANDSBERGER S E, SHERIDAN T B. A new design for parallel link manipulator[C]//1985 IEEE International Conference on Systems, Man, and Cybernetics. Tucson, USA, 1985:812-814. [3] GOSSELIN C. Cable-driven parallel mechanisms:State of the art and perspectives[J]. Mechanical Engineering Reviews, 2014, 1(1):DSM0004. [4] KINO H, YAHIRO T, TAKEMURA F, et al. Robust PD control using adaptive compensation for completely restrained parallel-wire driven robots:Translational systems using the minimum number of wires under zero-gravity condition[J]. IEEE Transactions on Robotics, 2007, 23(4):803-812. [5] KHOSRAVI M A, TAGHIRAD H D. Experimental performance of robust PID controller on a planar cable robot[C]//First International Conference on Cable-Driven Parallel Robots. Berlin, Germany:Springer, 2013:337-352. [6] AFLAKIYAN A, BAYANI H, MASOULEH M T. Computed torque control of a cable suspended parallel robot[C]//Proceedings of the 3rd RSI International Conference on Robotics and Mechatronics. Tehran, Iran:IEEE, 2015. [7] OH S R, AGRAWAL S K. Nonlinear sliding mode control and feasible workspace analysis for a cable suspended robot with input constraints and disturbances[C]//Proceedings of the 2004 American Control Conference. Boston, USA:IEEE, 2004:4631-4636. [8] KHOSRAVI M A, TAGHIRAD H D. Robust PID control of fully-constrained cable driven parallel robots[J]. Mechatronics, 2014, 24(2):87-97. [9] LAROCHE E, CHELLAL R, CUVILLON L, et al. A preliminary study for H∞ control of parallel cable-driven manipulators[C]//First International Conference on Cable-Driven Parallel Robots. Berlin, Germany:Springer, 2013:353-369. [10] ZI B, DUAN B Y, DU J L, et al. Dynamic modeling and active control of a cable-suspended parallel robot[J]. Mechatronics, 2008, 18(1):1-12. [11] CHELLAL R, CUVILLON L, LAROCHE E. A kinematic vision-based position control of a 6-DoF cable-driven parallel robot[C]//Proceedings of the Second International Conference on Cable-Driven Parallel Robots. Cham, Germany:Springer, 2015:213-225. [12] OH S R, AGRAWAL S K. A reference governor-based controller for a cable robot under input constraints[J]. IEEE Transactions on Control Systems Technology, 2005, 13(4):639-645. [13] OH S R, AGRAWAL S K. Generation of feasible set points and control of a cable robot[J]. IEEE Transactions on Robotics, 2006, 22(3):551-558. [14] OH S R, AGRAWAL S K. The feasible workspace analysis of a set point control for a cable-suspended robot with input constraints and disturbances[J]. IEEE Transactions on Control Systems Technology, 2006, 14(4):735-742. [15] GOSSELIN C, REN P, FOUCAULT S. Dynamic trajectory planning of a two-DOF cable-suspended parallel robot[C]//2012 IEEE International Conference on Robotics and Automation. Saint Paul, USA:IEEE, 2012:1476-1481. [16] GOSSELIN C, FOUCAULT S. Dynamic point-to-point trajectory planning of a two-DOF cable-suspended parallel robot[J]. IEEE Transactions on Robotics, 2014, 30(3):728-736. [17] REN P, GOSSELIN C. Trajectory planning of cable-suspended parallel robots using interval positive-definite polynomials[C]//ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Chicago, USA:ASME, 2012. [18] TANG L W, TANG X Q, JIANG X L, et al. Dynamic trajectory planning study of planar two-dof redundantly actuated cable-suspended parallel robots[J]. Mechatronics, 2015, 30:187-197. [19] 张文佳, 尚伟伟. 2自由度绳索牵引并联机器人的高速点到点轨迹规划方法[J]. 机械工程学报, 2016, 52(3):1-8. ZHANG W J, SHANG W W. High-speed point-to-point trajectory planning of a 2-DOF cable driven parallel manipulator[J]. Journal of Mechanical Engineering, 2016, 52(3):1-8. (in Chinese) [20] XIE Z X, MA B, REN P. Computed torque control of a two-DOF cable-suspended parallel mechanism[C]//ASME 2016 International Mechanical Engineering Congress and Exposition. Arizona, USA:ASME, 2016. [21] MOORE R E, KEARFOOT R B, CLOUD M J. Introduction to interval analysis[M]. Philadelphia:Society for Industrial and Applied Mathematics, 2009.