Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (9): 972-978    DOI: 10.16511/j.cnki.qhdxxb.2020.26.029
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
五轴侧铣加工铣削力预测
王立平1,2, 王顶2, 于广1, 郭宏伟2, 李伟涛1
1. 清华大学 机械工程系, 北京 100084;
2. 电子科技大学 机械与电气工程学院, 成都 611731
Milling forces during five-axis flank milling
WANG Liping1,2, WANG Ding2, YU Guang1, GUO Hongwei2, LI Weitao1
1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
2. School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
全文: PDF(3013 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 五轴侧铣加工过程中刀具姿态实时变化,导致加工过程中瞬时未变形切屑厚度(instantaneous undeformed cutting thickness,IUCT)计算困难、铣削力计算效率低下。为了提高铣削力的计算效率,首先,建立了微元铣削力模型,提出了一种平头铣刀五轴侧铣IUCT计算方法,该方法将切削厚度分为2部分计算;其次,对比了该模型与现有模型的铣削力计算效率,发现该文提出的铣削力模型计算效率提升了约40%;最后,通过五轴侧铣加工对该文模型进行了实验验证,结果表明:该模型在提高计算效率的同时具有良好的预测精度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王立平
王顶
于广
郭宏伟
李伟涛
关键词 平头铣刀五轴侧铣加工瞬时未变形切屑厚度铣削力预测    
Abstract:In five-axis flank milling, the continuous change of the tool posture complicates predictions of the instantaneous undeformed cutting thickness (IUCT). The milling force prediction accuracy is improved in this study using a micro-element milling force model for the an IUCT method for a flat-end milling cutter with the IUCT divided into two parts. The results show that the milling force model calculational efficiency is improved by 40% compared to a previous model. The model predictions were then verified against flank milling tests. These results show that the model is accurate and efficient.
Key wordsflat-end cutter    five-axis flank milling    instantaneous undeformed cutting thickness    milling force prediction
收稿日期: 2020-07-14      出版日期: 2021-08-21
基金资助:北京市自然科学基金青年项目(3194050);国家自然科学基金面上项目(51975319);国家自然科学基金青年项目(51905302)
通讯作者: 于广,助理研究员,E-mail:gyu@tsinghua.edu.cn     E-mail: gyu@tsinghua.edu.cn
引用本文:   
王立平, 王顶, 于广, 郭宏伟, 李伟涛. 五轴侧铣加工铣削力预测[J]. 清华大学学报(自然科学版), 2021, 61(9): 972-978.
WANG Liping, WANG Ding, YU Guang, GUO Hongwei, LI Weitao. Milling forces during five-axis flank milling. Journal of Tsinghua University(Science and Technology), 2021, 61(9): 972-978.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.26.029  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I9/972
  
  
  
  
  
  
  
  
  
  
[1] ZHANG X, ZHANG J, PANG B, et al. An accurate prediction method of cutting forces in 5-axis flank milling of sculptured surface [J]. International Journal of Machine Tools and Manufacture, 2016, 104: 26-36.
[2] LAVERNHE S, QUINSAT Y, LARTIGUE C, et al. Realistic simulation of surface defects in five-axis milling using the measured geometry of the tool [J]. International Journal of Advanced Manufacturing Technology, 2014, 74(1-4): 393-401.
[3] LAVERNHE S, QUINSAT Y, LARTIGUE C. Model for the prediction of 3D surface topography in 5-axis milling [J]. International Journal of Advanced Manufacturing Technology, 2010, 51(9-12): 915-924.
[4] CHEN G D, SUN Y Z, ZHANG F H, et al. Influence of ultra-precision fly cutting spindle error on surface frequency domain error formation [J]. International Journal of Advanced Manufacturing Technology, 2017, 88(9): 3233-3241.
[5] QUINSAT Y, DUBREUIL L, LARTIGUE C. A novel approach for in-situ detection of machining defects [J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(5-8): 1625-1638.
[6] 赵凯, 刘战强. 铣削力预测方法和影响因素综述[J]. 机械科学与技术, 2015, 34(8): 1190-1200. ZHAO K, LIU Z Q. An overview on milling force prediction methods and influencing factors [J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(8): 1190-1200. (in Chinese)
[7] AYDIN M, UÇAR M, CENGIZ A, et al. A methodology for cutting force prediction in side milling [J]. Materials and Manufacturing Processes, 2014, 29(11-12): 1429-1435.
[8] LI Z L, ZHU L M. Mechanistic modeling of five-axis machining with a flat end mill considering bottom edge cutting effect [J]. Journal of Manufacturing Science and Engineering, 2016, 138(11): 111012.
[9] LI Z L, NIU J B, WANG X Z, et al. Mechanistic modeling of five-axis machining with a general end mill considering cutter runout [J]. International Journal of Machine Tools and Manufacture, 2015, 96: 67-79.
[10] SUN Y W, GUO Q. Numerical simulation and prediction of cutting forces in five-axis milling processes with cutter run-out [J]. International Journal of Machine Tools and Manufacture, 2011, 51(10-11): 806-815.
[11] GUO Q, ZHAO B, JIANG Y, et al. Cutting force modeling for non-uniform helix tools based on compensated chip thickness in five-axis flank milling process [J]. Precision Engineering, 2018, 51: 659-681.
[12] WANG L P, YUAN X, SI H, et al. A cutting force model based on compensated chip thickness in five-axis flank milling [J]. The International Journal of Advanced Manufacturing Technology, 2019, 104: 1413-1423.
[13] OZTURK E, BUDAK E. Modeling of 5-axis milling processes [J]. Machining Science and Technology, 2007, 11(3): 287-311.
[14] ZHU Z R, YAN R, PENG F Y, et al. Parametric chip thickness model based cutting forces estimation considering cutter runout of five-axis general end milling [J]. International Journal of Machine Tools and Manufacture, 2016, 101: 35-51.
[15] 刘均, 曾桂林, 邹益胜, 等. 瞬时铣削力数学模型及验证[J]. 机械设计与制造, 2016(11): 1-4. LIU J, ZENG G L, ZOU Y S, et al. Instantaneous milling force mathematical model and experimental verification [J]. Mechanical Design & Manufacturing, 2016(11): 1-4. (in Chinese)
[16] ALTINTAS Y. Manufacturing automation: Metal cutting mechanics, machine tool vibrations, and CNC design [M]. 2nd ed. London: Cambridge University Press, 2012.
[17] 北京兆迪科技有限公司. UG NX12.0数控加工完全学习手册[M]. 北京: 机械工业出版社, 2019. Beijing Zhaodi Technology Co., Ltd.. UG NX12.0 CNC machining complete learning manual [M]. Beijing: China Machine Press, 2019. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn