Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (11): 1295-1300    DOI: 10.16511/j.cnki.qhdxxb.2020.26.030
  核能与新能源工程 本期目录 | 过刊浏览 | 高级检索 |
核动力对无人航空飞行器续航能力提升研究
朱炳聿, 丁青青
清华大学 电机工程与应用电子技术系, 北京 100084
Nuclear power to improve the endurance of unmanned aerial vehicles
ZHU Bingyu, DING Qingqing
Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(2156 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 续航能力是飞行器性能的重要指标。核能以其能量密度极高的显著优势,有望对无人航空飞行器续航能力带来巨大的提升。该文以国际上某型号无人航空飞行器为原型,通过分析比较核热推进堆芯方案,设计出适用于该无人航空飞行器的核能动力系统核心模块的堆芯方案,用以替代原动力系统发动机中的核心模块燃烧室,并对发动机核心模块装备核动力的可行性、核动力驱动的无人航空飞行器续航能力的提升进行分析研究。结果表明,核动力堆芯重1 504.75 kg,需要3%富集度UC 119 kg,燃料工作温度低于2 500 K,符合反应堆物理、热工的可行性要求,最终续航时间达近170 d,能够显著提升无人航空飞行器的续航能力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱炳聿
丁青青
关键词 核动力无人航空飞行器续航能力    
Abstract:Endurance is an important indicator of aircraft performance. Nuclear energy has extremely high energy densities and is expected to significantly improve the endurance of unmanned aerial vehicles. This paper takes a certain type of UAV in the world as a prototype. And through analysis and comparison of nuclear thermal propulsion core schemes, a core scheme suitable for the core module of the nuclear power system of the UAV is designed to replace the original power system engine, the core module combustion chamber of the engine. Then this paper analyses the feasibility of the core module of the engine to be equipped with nuclear power, and the improvement of the endurance of the UAV driven by nuclear power. The results show that the nuclear power reactor core weighs 1 504.75 kg, requires a 3% enrichment degree of UC 119 kg, and the fuel working temperature is lower than 2 500 K, which meets the reactor physics and thermal engineering requirements. The core lifetime is nearly 170 days, which can significantly improve the endurance of unmanned aerial vehicles.
Key wordsnuclear power    unmanned aerial vehicle    endurance
收稿日期: 2020-08-10      出版日期: 2021-10-19
通讯作者: 丁青青,副教授,E-mail:dddsunny@163.com     E-mail: dddsunny@163.com
引用本文:   
朱炳聿, 丁青青. 核动力对无人航空飞行器续航能力提升研究[J]. 清华大学学报(自然科学版), 2021, 61(11): 1295-1300.
ZHU Bingyu, DING Qingqing. Nuclear power to improve the endurance of unmanned aerial vehicles. Journal of Tsinghua University(Science and Technology), 2021, 61(11): 1295-1300.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.26.030  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I11/1295
  
  
  
  
  
  
  
  
[1] 廖宏图. 核热推进技术综述[J]. 火箭推进, 2011, 37(4):1-11.LIAO H T. Overview of nuclear thermal propulsion technologies[J]. Journal of Rocket Propulsion, 2011, 37(4):1-11. (in Chinese)
[2] 解家春, 赵守智. 核热推进堆芯方案的发展[J]. 原子能科学技术, 2012, 46(S2):889-895. XIE J C, ZHAO S Z. Development of reactor core for nuclear thermal propulsion[J]. Atomic Energy Science and Technology, 2012, 46(S2):889-895. (in Chinese)
[3] ROBBINS W H, FINGER H B. An historical perspective of the NERVA nuclear rocket engine technology program[C]//Proceedings of Conference on Advanced SEI Technologies. Los Angeles, USA:AIAA, 1991.
[4] BRENGLE R G, HARTY R B, BHATTACHARYYA S. The promise and challenges of cermet fueled nuclear thermal propulsion reactors[C]//Proceedings of the 29th Joint Propulsion Conference and Exhibit. Monterey, USA:AIAA, 1993.
[5] LUDEWIG H, POWELL J R, TODOSOW M, et al. Design of particle bed reactors for the space nuclear thermal propulsion program[J]. Progress in Nuclear Energy, 1996, 30(1):1-65.
[6] POWELL J, PANIAGUA J, MAISE G, et al. High performance nuclear thermal propulsion system for near term exploration missions to 100 A.U. and beyond[J]. Acta Astronautica, 1999, 44(2-4):159-166.
[7] GOUW R R. Nuclear design analysis of square-lattice honeycomb space rocket engine[D]. Florida:Florida University, 2000.
[8] ZAKIROV V, PAVSHOOK V. Russian nuclear rocket engine design for Mars exploration[J]. Tsinghua Science & Technology, 2007, 12(3):256-260.
[9] BULMAN M J, CULVER D W, MCLLWAIN M C, et al. US/CIS integrated NTRE[C]//Proceedings of the 29th Joint Propulsion Conference and Exhibit. Monterey, USA:AIAA, 1993.
[10] CLARK J S, MCDANIEL P, HOWE S, et al. Nuclear thermal propulsion technology:Results of an interagency panel in FY 1991, NASA technical memorandum 105711[R]. Cleveland:NASA, 1991.
[11] KAMMASH T. Fuel containment and stability in the gas core nuclear rocket (final report). April 15, 1993-April 14, 1994[R]. Michigan:University of Michigan, 1996.
[12] WANG K, LI Z G, SHE D, et al. Progress on RMC-a Monte Carlo neutron transport code for reactor analysis[C]//Proceedings of the International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M & C'11). Brasilia, Brazil:ANS, 2011.
[13] 姚远. 反应堆蒙卡分析中热工反馈效应初步研究[D]. 北京:华北电力大学, 2017. YAO Y. Initial research of thermal hydraulic feedback in the reactor Monte Carlo analysis[D]. Beijing:North China Electric Power University, 2017. (in Chinese)
[14] 余健开, 李松阳, 王侃, 等. 反应堆用核截面处理程序RXSP的研发与验证[J]. 核动力工程, 2013, 34(S1):10-13. YU J K, LI S Y, WANG K, et al. Development and validation of nuclear cross section processing code for reactor analysis-RXSP[J]. Nuclear Power Engineering, 2013, 34(S1):10-13. (in Chinese)
[1] 游尔胜, 佘顶, 石磊. Brayton空间核能系统质量估算模型[J]. 清华大学学报(自然科学版), 2018, 58(5): 450-455.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn