Abstract:Automatic welding of large steel structures, especially three-dimensional spherical surfaces, requires a mechanism that can walk on the spherical surface and a stable welding tracking control system. This paper describes a wall-climbing robot that combines a crawler with a wheel to balance the required flexibility of the wall-climbing mechanism and the load capacity. The robot can automatically identify the weld position through a visual tracking system and intelligently determine the weld path to enable autonomous movement and tracking of the weld. The flexible, trackless crawler body adapts to large curvature changes in the spherical tank and can walk freely on the tank surface to provide efficient automatic welding of spherical tanks.
[1] 罗雨, 张中亮, 焦向东, 等. 球罐全位置焊接机器人研究现状及其关键技术[J]. 电焊机, 2016, 46(10):25-30. LUO Y, ZHANG Z L, JIAO X D, et al. Research status and key technology of all-position welding robots on spherical tank[J]. Electric Welding Machine, 2016, 46(10):25-30. (in Chinese) [2] 雷毅, 许晓锋, 姚荣荣. 球罐自动焊应用现状及其焊缝跟踪技术研究[J]. 石油化工设备, 2006, 35(5):49-52. LEI Y, XU X F, YAO R R. Applied situation of auto-welding technology for spherical tank and research development of its weld seam tracking technology[J]. Petro-chemical Equipment, 2006, 35(5):49-52. (in Chinese) [3] 王军波, 孙振国, 陈强, 等. 基于CCD传感器的球罐焊接机器人焊缝跟踪[J]. 焊接学报, 2001, 22(2):31-34. WANG J B, SUN Z G, CHEN Q, et al. CCD sensor assisted weld seam tracing method for spherical tank welding robot[J]. Transactions of the China Welding Institution, 2001, 22(2):31-34. (in Chinese) [4] 许燕玲. 基于视觉及电弧传感技术的机器人GTAW三维焊缝实时跟踪控制技术研究[D]. 上海:上海交通大学, 2013. XU Y L. Research on real-time tracking and control technology of three-dimension welding seam during welding robot GTAW process based on vision sensor and arc sensor[D]. Shanghai:Shanghai Jiao Tong University, 2013. (in Chinese) [5] 洪宇翔, 都东, 潘际銮, 等. 基于轨迹动态规划的移动机器人焊道自动跟踪[J]. 焊接学报, 2015, 36(10):25-28. HONG Y X, DU D, PAN J L, et al. Seam tracking based on dynamic trajectory planning for a mobile welding robot[J]. Transactions of the China Welding Institution, 2015, 36(10):25-28. (in Chinese) [6] 潘际銮, 闫炳义, 高力生, 等. 永磁履带自主全位置爬行式弧焊机器人的控制方法:CN03153663.8. 2004-04-21. PAN J L, YAN B Y, GAO L S, et al. Method for controlling fully positioning self creeping arc welding robot with permanent magnet caterpillar:CN03153663.8. 2004-04-21. (in Chinese) [7] 张华, 潘际銮, 徐健宁, 等. 无轨导全位置爬行式弧焊机器人系统[J]. 机械工程学报, 2006, 42(7):85-91. ZHANG H, PAN J L, XU J N, et al. Trackless crawl type all-position arc welding robot system[J]. Chinese Journal of Mechanical Engineering, 2006, 42(7):85-91. (in Chinese) [8] KERMORGANT O. A magnetic climbing robot to perform autonomous welding in the shipbuilding industry[J]. Robotics and Computer-Integrated Manufacturing, 2018, 53:178-186. [9] SCHMIDT D, BERNS K. Climbing robots for maintenance and inspections of vertical structures:A survey of design aspects and technologies[J]. Robotics and Autonomous Systems, 2013, 61(12):1288-1305. [10] 桂仲成, 陈强, 孙振国. 多体柔性永磁吸附爬壁机器人[J]. 机械工程学报, 2008, 44(6):177-182. GUI Z C, CHEN Q, SUN Z G. Wall climbing robot employing multi-body flexible permanent magnetic adhesion system[J]. Chinese Journal of Mechanical Engineering, 2008, 44(6):177-182. (in Chinese) [11] 王军波, 陈强, 孙振国. 爬壁机器人变磁力吸附单元的优化设计[J]. 清华大学学报(自然科学版), 2003, 43(2):214-217, 226. WANG J B, CHEN Q, SUN Z G. Optimization of attracting devices with variable magnetic force for wall-climbing robots[J]. Journal of Tsinghua University (Science and Technology), 2003, 43(2):214-217, 226. (in Chinese) [12] 宋伟, 姜红建, 王韬, 等. 爬壁机器人磁吸附组件优化设计与试验研究[J]. 浙江大学学报(工学版), 2018, 52(10):1837-1844. SONG W, JIANG H J, WANG T, et al. Optimization design and experimental research on magnetic components for wall-climbing robot[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(10):1837-1844. (in Chinese) [13] 黄忠, 刘泉, 王茂. 基于Ansoft的爬壁机器人吸附装置分析及设计[J]. 机械工程师, 2015(12):108-110. HUANG Z, LIU Q, WANG M. Analysis and design of adsorption device of wall climbing robot based on Ansoft[J]. Mechanical Engineer, 2015(12):108-110. (in Chinese) [14] 孟宪宇, 董华伦. 爬壁机器人结构设计及曲面磁力吸附关键技术研究[J]. 制造业自动化, 2018, 40(6):19-22, 39. MENG X Y, DONG H L. Research on the structure design of climbing robot and the key technology of surface magnetic force absorption[J]. Manufacturing Automation, 2018, 40(6):19-22, 39. (in Chinese) [15] CHINAKHOV D A, VOROBYEV A V, GOTOVSHCHIK Y M. Simulation of wind influence on the thermal processes in gas-shielded welding[J]. Applied Mechanics and Materials, 2014, 682:91-95. [16] 姜克钊. 基于双层动态开窗V型焊缝快速识别方法[J]. 电焊机, 2013, 43(11):106-108, 164. JIANG K Z. Fast recognition algorithm of V type groove seam based on double dynamic window[J]. Electric Welding Machine, 2013, 43(11):106-108, 164. (in Chinese) [17] 黎咸西, 熊震宇. 基于视觉传感的多层多道焊缝图像特征的识别[J]. 南昌航空大学学报(自然科学版), 2011, 25(1):53-57. LI X X, XIONG Z Y. Identification of image characters for multi-pass welding seam based on vision sensing[J]. Journal of Nanchang Hangkong University (Natural Sciences), 2011, 25(1):53-57. (in Chinese) [18] 刘习文, 洪波, 戴铁峰. 激光视觉焊缝跟踪图像处理与坡口识别[J]. 激光与红外, 2011, 41(7):804-807. LIU X W, HONG B, DAI T F. Image processing and groove recognition in weld seam tracking based on laser vision[J]. Laser & Infrared, 2011, 41(7):804-807. (in Chinese) [19] GU W P, XIONG Z Y, WAN W. Autonomous seam acquisition and tracking system for multi-pass welding based on vision sensor[J]. The International Journal of Advanced Manufacturing Technology, 2013, 69(1-4):451-460. [20] 雷正龙, 吕涛, 陈彦宾, 等. 基于扫描激光视觉传感的焊缝图像特征信息识别[J]. 焊接学报, 2013, 34(5):54-58. LEI Z L, LV T, CHEN Y B, et al. Features extraction for weld image of scanning laser sensing[J]. Transactions of the China Welding Institution, 2013, 34(5):54-58. (in Chinese)